Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Reproduction ; 153(3): 305-318, 2017 03.
Article in English | MEDLINE | ID: mdl-27965401

ABSTRACT

PIWI proteins and their associated piRNAs have been the focus of intensive research in the past decade; therefore, their participation in the maintenance of genomic integrity during spermatogenesis has been well established. Recent studies have suggested important roles for the PIWI/piRNA system outside of gametogenesis, based on the presence of piRNAs and PIWI proteins in several somatic tissues, cancers, and the early embryo. Here, we investigated the small RNA complement present in bovine gonads, gametes, and embryos through next-generation sequencing. A distinct piRNA population was present in the testis as expected. However, we also found a large population of slightly shorter, 24-27 nt piRNA-like RNA (pilRNAs) in pools of oocytes and zygotes. These oocyte and embryo pilRNAs exhibited many of the canonical characteristics of piRNAs including a 1U bias, the presence of a 'ping-pong' signature, genomic clustering, and transposable element targeting. Some of the major transposons targeted by oocyte and zygote pilRNA were from the LINE RTE and ERV1 classes. We also identified pools of pilRNA potentially derived from, or targeted at, specific mRNA sequences. We compared the frequency of these gene-associated pilRNAs to the fold change in the expression of respective mRNAs from two previously reported transcriptome datasets. We observed significant negative correlations between the number of pilRNAs targeting mRNAs, and their fold change in expression between the 4-8 cell and 8-16 cell stages. Together, these results represent one of the first characterizations of the PIWI/piRNA pathway in the translational bovine model, and in the novel context of embryogenesis.


Subject(s)
DNA Transposable Elements , Oocytes/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Spermatogenesis/physiology , Testis/metabolism , Animals , Cattle , Female , Male , Oocytes/cytology , RNA, Messenger/genetics , Testis/cytology , Transcriptome
2.
Int J Mol Sci ; 17(3): 396, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26999121

ABSTRACT

Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo.


Subject(s)
Fertilization , MicroRNAs/genetics , Oocytes/metabolism , Oogenesis , Animals , Cattle , Female , Gene Expression Regulation, Developmental , Oocytes/cytology
3.
Biol Reprod ; 94(4): 75, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26911426

ABSTRACT

PIWI proteins are members of the larger Argonaute family and bind to specific 24-32 nucleotide RNAs called PIWI-interacting RNAs (piRNAs). PIWI-interacting RNAs direct PIWI-mediated suppression of retrotransposon expression in the male germline in humans and mice, but their roles in bovine reproduction and embryogenesis are unknown. Although the majority of research in mammals has focused on the functions of PIWI proteins during spermatogenesis, this family of proteins and their associated piRNAs have recently been identified in early embryos. The goals of this study were to characterize the expression of PIWIL1 in bovine testis, oocytes, and early embryos. A full-lengthPIWIL1transcript and protein was found in the testis, specifically in the germs cells of mature seminiferous tubules. RNA-immunoprecipitation demonstrated the presence of putative piRNAs with a mean length of 30 nucleotides bound to PIWIL1 in testes. 3'-Rapid amplification of cDNA ends analysis ofPIWIL1transcripts in testes and oocytes revealed two shorter isoforms in addition to the full-length transcript that was only present in testes. TruncatedPIWIL1isoforms in oocytes and testes were confirmed through amplification of their unique intronic fragments. Expression profiling ofPIWIL1through early embryogenesis demonstrated peak mRNA expression at the 2-cell stage with decreasing levels through to the blastocyst. PIWIL1-YFP fusion plasmids were produced for each isoform and expressed in HEK 293 cells, demonstrating nuclear exclusion and size-specific banding of the different isoforms. These data represent the first comprehensive characterization of PIWIL1 in bovine, revealing functional similarities with PIWIL1 in other species and suggest tissue-specific expression of several isoforms.


Subject(s)
Argonaute Proteins/metabolism , Embryo, Mammalian/metabolism , Ovary/metabolism , Testis/metabolism , Animals , Argonaute Proteins/genetics , Cattle , Cloning, Molecular , Embryonic Development , Female , HEK293 Cells , Humans , Male , Pregnancy , Protein Isoforms/metabolism , RNA, Small Interfering/metabolism
4.
Reprod Biol Endocrinol ; 12: 85, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25179211

ABSTRACT

BACKGROUND: Oocyte fertilization and successful embryo implantation are key events marking the onset of pregnancy. In sexually reproducing organisms, embryogenesis begins with the fusion of two haploid gametes, each of which has undergone progressive stages of maturation. In the final stages of oocyte maturation, minimal transcriptional activity is present and regulation of gene expression occurs primarily at the post-transcriptional level. MicroRNAs (miRNA) are potent effectors of post-transcriptional gene silencing and recent evidence demonstrates that the miR-34 family of miRNA are involved in both spermatogenesis and early events of embryogenesis. METHODS: The profile of miR-34 miRNAs has not been characterized in gametes or embryos of Bos taurus. We therefore used quantitative reverse transcription PCR (qRT-PCR) to examine this family of miRNAs: miR-34a, -34b and -34c as well as their precursors in bovine gametes and in vitro produced embryos. Oocytes were aspirated from antral follicles of bovine ovaries, and sperm cells were isolated from semen samples of 10 bulls with unknown fertility status. Immature and in vitro matured oocytes, as well as cleaved embryos, were collected in pools. Gametes, embryos and ovarian and testis tissues were purified for RNA. RESULTS: All members of the miR-34 family are present in bovine spermatozoa, while only miR-34a and -34c are present in oocytes and cleaved (2-cell) embryos. Mir-34c demonstrates variation among different bulls and is consistently expressed throughout oocyte maturation and in the embryo. The primary transcript of the miR-34b/c bicistron is abundant in the testes and present in ovarian tissue but undetectable in oocytes and in mature spermatozoa. CONCLUSIONS: The combination of these findings suggest that miR-34 miRNAs may be required in developing bovine gametes of both sexes, as well as in embryos, and that primary miR-34b/c processing takes place before the completion of gametogenesis. Individual variation in sperm miR-34 family abundance may offer potential as a biomarker of male bovine fertility.


Subject(s)
Blastocyst/metabolism , Cleavage Stage, Ovum/metabolism , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , Ovum/metabolism , Spermatozoa/metabolism , Abattoirs , Animals , Animals, Inbred Strains , Biomarkers/metabolism , Blastocyst/cytology , Cattle , Cleavage Stage, Ovum/cytology , Crosses, Genetic , Cryopreservation/veterinary , Ectogenesis , Embryo Culture Techniques/veterinary , Female , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Male , Ontario , Oogenesis , Ovum/cytology , Semen Preservation/veterinary , Spermatogenesis , Spermatozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...