Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 114(5): 951-960, 2017 05.
Article in English | MEDLINE | ID: mdl-27888663

ABSTRACT

Anaerobic digestion (AD) of lignocellulosic materials is commonly limited by the hydrolysis step. Unlike unprocessed lignocellulosic materials, paper and paper board (PPB) are processed for their fabrication. Such modifications may affect their methane yields and methane production rates. Previous studies have investigated the correlation between lignin and biomethane yields of unprocessed lignocellulosic materials; nevertheless, there is limited knowledge regarding the relationship between the AD kinetic parameters and composition of PPB. This study evaluated correlations of methane yields and Monod and Gompertz kinetic parameters with structural carbohydrates, lignin, and ash concentration of five types of PPBs. All components were used as single and combined independent variables in linear regressions to predict methane yield, maximum specific methanogenic activity (SMAmax ), saturation constant (Ks ), and lag phase (λ). Additionally, microbial community profiles were obtained for each PPB assay. Results showed methane yields ranging from 69.2 ± 8.61 to 97.2 ± 2.29% of PPB substrates provided. The highest correlation coefficients were obtained for SMAmax as function of hemicellulose/(lignin + ash) (R2 = 0.86) and for λ as a function of lignin + cellulose (R2 = 0.85). All other parameters exhibited weaker correlations (R2 ≤ 0.77). Relative abundance analyses revealed no major changes in the community profile for each of the substrates evaluated. The overall findings of this study are: (i) combinations of structural carbohydrates, lignin, and ash used as ratios of degradable to either non-degradable or slowly degradable fractions predict AD kinetic parameters of PPB materials better than single independent variables; and (ii) other components added during their fabrication may also influence both methane yield and kinetic parameters. Biotechnol. Bioeng. 2017;114: 951-960. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bioreactors/microbiology , Lignin/analysis , Lignin/metabolism , Paper , Sewage/microbiology , Anaerobiosis , Biological Oxygen Demand Analysis , Cellulose/analysis , Cellulose/chemistry , Cellulose/metabolism , Lignin/chemistry , Linear Models , Methane/metabolism
2.
Bioresour Technol ; 216: 894-903, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27323241

ABSTRACT

Austere US military bases typically dispose of solid wastes, including large fractions of food waste (FW) and corrugated cardboard (CCB), by open dumping, landfilling, or burning. Anaerobic digestion (AD) offers an opportunity to reduce pollution and recover useful energy. This study aimed to evaluate the rates and yields of AD for FW-CCB mixtures. Batch AD was analyzed at substrate concentrations of 1-50g total chemical oxygen demand (COD)L(-1) using response surface methodology. At low concentrations, higher proportions of FW were correlated with faster specific methanogenic activities and greater final methane yields; however, concentrations of FW ⩾18.75gCODL(-1) caused inhibition. Digestion of mixtures with ⩾75% CCB occurred slowly but achieved methane yields >70%. Greater shifts in microbial communities were observed at higher substrate concentrations. Statistical models of methane yield and specific methanogenic activity indicated that FW and CCB exhibited no considerable interactions as substrates for AD.


Subject(s)
Military Facilities , Refuse Disposal/methods , Anaerobiosis , Biofuels , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Food , Methane/metabolism , Microbial Consortia/genetics , Models, Statistical , Refuse Disposal/instrumentation , Solid Waste
3.
Biotechnol Prog ; 31(4): 946-56, 2015.
Article in English | MEDLINE | ID: mdl-25960402

ABSTRACT

Economical production of second generation ethanol from Ponderosa pine is of interest due to widespread mountain pine beetle infestation in the western United States and Canada. The conversion process is limited by low glucose and high inhibitor concentrations resulting from conventional low-solids dilute acid pretreatment and enzymatic hydrolysis. Inhibited fermentations require larger fermentors (due to reduced volumetric productivity) and low sugars lead to low ethanol titers, increasing distillation costs. In this work, multiple effect evaporation (MEE) and nanofiltration (NF) were evaluated to concentrate the hydrolysate from 30 g/l to 100, 150, or 200 g/l glucose. To ferment this high gravity, inhibitor containing stream, traditional batch fermentation was compared with continuous stirred tank fermentation (CSTF) and continuous fermentation with cell recycle (CSTF-CR). Equivalent annual operating cost (EAOC = amortized capital + yearly operating expenses) was used to compare these potential improvements for a local-scale 5 MGY ethanol production facility. Hydrolysate concentration via evaporation increased EAOC over the base process due to the capital and energy intensive nature of evaporating a very dilute sugar stream; however, concentration via NF decreased EAOC for several of the cases (by 2 to 15%). NF concentration to 100 g/l glucose with a CSTF-CR was the most economical option, reducing EAOC by $0.15 per gallon ethanol produced. Sensitivity analyses on NF options showed that EAOC improvement over the base case could still be realized for even higher solids removal requirements (up to two times higher centrifuge requirement for the best case) or decreased NF performance.


Subject(s)
Biotechnology/methods , Ethanol/metabolism , Biotechnology/economics , Equipment Reuse/economics , Fermentation , Filtration , Hydrolysis , Nanotechnology
4.
Bioresour Technol ; 179: 219-226, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25545091

ABSTRACT

While softwoods represent a potential feedstock for second generation ethanol production, compounds present in their hydrolysates can inhibit fermentation. In this study, a novel Design of Experiments (DoE) approach was used to identify significant inhibitory effects on Saccharomyces cerevisiae D5A for the purpose of guiding kinetic model development. Although acetic acid, furfural and 5-hydroxymethyl furfural (HMF) were present at potentially inhibitory levels, initial factorial experiments only identified ethanol as a significant rate inhibitor. It was hypothesized that high ethanol levels masked the effects of other inhibitors, and a subsequent factorial design without ethanol found significant effects for all other compounds. When these non-ethanol effects were accounted for in the kinetic model, R¯(2) was significantly improved over an ethanol-inhibition only model (R¯(2)=0.80 vs. 0.76). In conclusion, when ethanol masking effects are removed, DoE is a valuable tool to identify significant non-ethanol inhibitors and guide kinetic model development.


Subject(s)
Ethanol/pharmacology , Models, Theoretical , Research Design , Analysis of Variance , Ethanol/metabolism , Kinetics , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism
5.
Biotechnol Bioeng ; 108(9): 2053-60, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21455936

ABSTRACT

This study investigated the detoxification of a dilute acid pretreated Ponderosa pine slurry using the polyelectrolyte polyethyleneimine (PEI). The addition of polyelectrolyte to remove enzymatic and/or fermentation inhibitory compounds, that is, acetic acid, furfural, and 5-hydroxymethylfurfural (HMF), was performed either before or after enzymatic hydrolysis to determine the optimal process sequence. Negligible acetic acid, glucose, and xylose were removed regardless of where in the process the polymer addition was made. Maximum furfural and HMF separation was achieved with the addition of PEI to a clarified pre-enzymatic hydrolysis liquor, which showed that 88.3% of furfural and 66.4% of HMF could be removed. On the other hand, only 23.1% and 13.4% of furfural and HMF, respectively, were removed from a post-enzymatic hydrolysis sample; thus, the effects of enzymes, glucose, and wood solids on inhibitor removal were also investigated. The presence of solid particles >0.2 µm and unknown soluble components <10 kDa reduced inhibitory compound removal, but the presence of elevated glucose levels and enzymes (cellulases) did not affect the separation. The fermentability of detoxified versus undetoxified hydrolysate was also investigated. An ethanol yield of 92.6% of theoretical was achieved with Saccharomyces cerevisiae fermenting the detoxified hydrolyzate, while no significant ethanol was produced in the undetoxified hydrolyzate. These results indicate that PEI may provide a practical alternative for furan removal and detoxification of lignocellolosic hydrolysates, and that application before enzymatic hydrolysis minimizes separation interferences.


Subject(s)
Biomass , Lignin/metabolism , Polyethyleneimine/chemistry , Waste Management/methods , Biofuels , Fermentation , Flocculation , Hydrolysis , Pinus , Saccharomyces cerevisiae/metabolism
6.
Biotechnol Bioeng ; 108(9): 2046-52, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21455937

ABSTRACT

In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery.


Subject(s)
Acetic Acid/isolation & purification , Chemical Fractionation/methods , Furaldehyde/analogs & derivatives , Furaldehyde/isolation & purification , Polyethyleneimine/chemistry , Acetic Acid/chemistry , Biomass , Furaldehyde/chemistry , Models, Chemical , Solubility , Waste Management
SELECTION OF CITATIONS
SEARCH DETAIL
...