Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 9(6)2017 06 21.
Article in English | MEDLINE | ID: mdl-28635666

ABSTRACT

Soybean Dwarf Virus (SbDV) is an important plant pathogen, causing economic losses in soybean. In North America, indigenous strains of SbDV mainly infect clover, with occasional outbreaks in soybean. To evaluate the risk of a US clover strain of SbDV adapting to other plant hosts, the clover isolate SbDV-MD6 was serially transmitted to pea and soybean by aphid vectors. Sequence analysis of SbDV-MD6 from pea and soybean passages identified 11 non-synonymous mutations in soybean, and six mutations in pea. Increasing virus titers with each sequential transmission indicated that SbDV-MD6 was able to adapt to the plant host. However, aphid transmission efficiency on soybean decreased until the virus was no longer transmissible. Our results clearly demonstrated that the clover strain of SbDV-MD6 is able to adapt to soybean crops. However, mutations that improve replication and/or movement may have trade-off effects resulting in decreased vector transmission.


Subject(s)
Adaptation, Biological , Glycine max/virology , Luteovirus/growth & development , Luteovirus/genetics , Mutation, Missense , Pisum sativum/virology , Serial Passage , Animals , Aphids/virology , Disease Transmission, Infectious , Insect Vectors/virology , North America , Sequence Analysis, DNA
2.
Environ Entomol ; 38(5): 1347-59, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19825288

ABSTRACT

Cucumber mosaic virus (CMV) has become a major limiting factor in snap bean production in the Great Lakes region of North America, and epidemics have occurred more frequently since the soybean aphid, Aphis glycines Matsumura, was introduced. Major aphid vectors of CMV epidemics were identified by statistically relating their temporal dispersal trends to the incidence of CMV. Alates were monitored weekly using water pan traps in 74 snap bean fields in New York and Pennsylvania from 2002 to 2006. Plants were tested for CMV by ELISA one time during late bloom in 2002 and 2003 and weekly over the season from 2004 to 2006. Principal vectors of CMV included Acyrthosiphon pisum (Harris), A. glycines, Aphis gossypii Glover, and Therioaphis trifolii (Monell). Among these, A. glycines and T. trifolii were likely responsible for severe CMV epidemics because they were among the most abundant species captured, they efficiently transmit CMV, and their dispersal activity was positively correlated with periods when CMV incidence was highest. Moreover, because high numbers of A. glycines and T. trifolii disperse during July and August, snap bean fields planted beyond late June are at risk for infection during early vegetative stages and are subsequently more at risk for yield loss. In contrast, plantings up to late June are less likely to become infected during early developmental stages and should escape yield loss because major vectors are dispersing infrequently. CMV-resistant or tolerant snap bean varieties should be planted after late June to reduce the risk of yield loss.


Subject(s)
Aphids/virology , Cucumovirus/physiology , Insect Vectors/virology , Phaseolus/virology , Plant Diseases/virology , Animal Migration , Animals , Aphids/physiology , Insect Vectors/physiology , New York
3.
J Virol ; 83(11): 5419-29, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19297484

ABSTRACT

Poleroviruses are restricted to vascular phloem tissues from which they are transmitted by their aphid vectors and are not transmissible mechanically. Phloem limitation has been attributed to the absence of virus proteins either facilitating movement or counteracting plant defense. The polerovirus capsid is composed of two forms of coat protein, the major P3 protein and the minor P3/P5 protein, a translational readthrough of P3. P3/P5 is required for insect transmission and acts in trans to facilitate long-distance virus movement in phloem tissue. Specific potato leafroll virus mutants lacking part or all of the P5 domain moved into and infected nonvascular mesophyll tissue when the source-sink relationship of the plant (Solanum sarrachoides) was altered by pruning, with the progeny virus now being transmissible mechanically. However, in a period of months, a phloem-specific distribution of the virus was reestablished in the absence of aphid transmission. Virus from the new phloem-limited infection showed compensatory mutations that would be expected to restore the production of full-length P3/P5 as well as the loss of mechanical transmissibility. The data support our hypothesis that phloem limitation in poleroviruses presumably does not result from a deficiency in the repertoire of virus genes but rather results from P3/P5 accumulation under selection in the infected plant, with the colateral effect of facilitating transmission by phloem-feeding aphid vectors.


Subject(s)
Capsid Proteins/metabolism , Luteoviridae/metabolism , Phloem/virology , Plant Diseases/virology , Amino Acid Sequence , Base Sequence , Capsid Proteins/chemistry , Capsid Proteins/genetics , Genome, Viral/genetics , Luteoviridae/genetics , Luteoviridae/ultrastructure , Microscopy, Electron, Transmission , Molecular Sequence Data , Mutation/genetics , Phloem/growth & development , Phloem/ultrastructure , Solanum/growth & development , Solanum/ultrastructure , Solanum/virology
4.
J Gen Virol ; 88(Pt 6): 1821-1830, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17485544

ABSTRACT

The coat protein (CP) of potato leafroll virus (PLRV) is the primary component of the capsid, and is a multifunctional protein known to be involved in vector transmission and virus movement within plant hosts, in addition to particle assembly. Thirteen mutations were generated in various regions of the CP and tested for their ability to affect virus-host and virus-vector interactions. Nine of the mutations prevented the assembly of stable virions. These mutants were unable to infect systemically four different host species. Furthermore, although virus replication and translation of the CP were similar for the mutants and wild-type virus in individual plant cells, the translation of the CP readthrough product was affected in several of the mutants. Four of the mutants were able to assemble stable particles and infect host plants systemically, similarly to the wild-type virus; however, two of the mutants were transmitted less efficiently by aphid vectors. Based on a computer-generated model of the PLRV CP, the mutations that prevented virion assembly were associated with subunit interfaces, while the amino acid alterations in the assembly-competent mutants were associated with surface loops. This and previous work indicates that the CP structural model has value in predicting the structural architecture of the virion.


Subject(s)
Aphids/virology , Capsid Proteins/genetics , Luteoviridae/genetics , Plant Diseases/virology , Point Mutation , Virion/physiology , Amino Acid Sequence , Animals , Capsid Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Protein Biosynthesis , Protein Structure, Tertiary , Nicotiana/virology , Virion/genetics , Virus Assembly/genetics , Virus Replication/genetics
5.
J Virol ; 79(18): 12077-80, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16140783

ABSTRACT

A Wheat streak mosaic virus (WSMV) genome lacking HC-Pro was constructed and confirmed by reverse transcription-PCR to systemically infect wheat, oat, and corn. Coupled in vitro transcription/translation reactions indicated that WSMV P1 proteinase cleaved the polyprotein at the P1/P3 junction of the HC-Pro null mutant. The WSMV HC-Pro null mutant was competent for virion formation, but the virus titer was reduced 4.5-fold relative to that of the wild type. Collectively, these results indicate that WSMV HC-Pro is dispensable for replication and movement, two essential processes that are disrupted by point and small-insertion mutations introduced into potyvirus HC-Pro.


Subject(s)
Cysteine Endopeptidases/genetics , Potyviridae/genetics , Potyviridae/pathogenicity , Viral Proteins/genetics , Avena/virology , Base Sequence , DNA, Viral/genetics , Gene Deletion , Genes, Viral , Plant Diseases/virology , Potyviridae/physiology , Triticum/virology , Virulence/genetics , Virus Replication/genetics , Zea mays/virology
6.
J Virol ; 79(14): 9054-61, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15994799

ABSTRACT

The eriophyid mite transmitted Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) shares a common genome organization with aphid transmitted species of the genus Potyvirus. Although both tritimoviruses and potyviruses encode helper component-proteinase (HC-Pro) homologues (required for nonpersistent aphid transmission of potyviruses), sequence conservation is low (amino acid identity, approximately 16%), and a role for HC-Pro in semipersistent transmission of WSMV by the wheat curl mite (Aceria tosichella [Keifer]) has not been investigated. Wheat curl mite transmissibility was abolished by replacement of WSMV HC-Pro with homologues of an aphid transmitted potyvirus (Turnip mosaic virus), a rymovirus (Agropyron mosaic virus) vectored by a different eriophyid mite, or a closely related tritimovirus (Oat necrotic mottle virus; ONMV) with no known vector. In contrast, both WSMV-Sidney 81 and a chimeric WSMV genome bearing HC-Pro of a divergent strain (WSMV-El Batán 3; 86% amino acid sequence identity) were efficiently transmitted by A. tosichella. Replacing portions of WSMV-Sidney 81 HC-Pro with the corresponding regions from ONMV showed that determinants of wheat curl mite transmission map to the 5'-proximal half of HC-Pro. WSMV genomes bearing HC-Pro of heterologous species retained the ability to form virions, indicating that loss of vector transmissibility was not a result of failure to encapsidate. Although titer in systemically infected leaves was reduced for all chimeric genomes relative to WSMV-Sidney 81, titer was not correlated with loss of vector transmissibility. Collectively, these results demonstrate for the first time that HC-Pro is required for virus transmission by a vector other than aphids.


Subject(s)
Arachnid Vectors/virology , Cysteine Endopeptidases/physiology , Mites/virology , Potyviridae/physiology , Triticum/virology , Viral Proteins/physiology , Animals , Cysteine Endopeptidases/genetics , Genes , Potyviridae/genetics , Viral Proteins/genetics , Virus Assembly
7.
Phytopathology ; 94(8): 868-74, 2004 Aug.
Article in English | MEDLINE | ID: mdl-18943108

ABSTRACT

ABSTRACT Thirteen aphid species were tested for their ability to transmit Pennsylvania isolates of Plum pox virus (PPV) collected in Columbia (PENN-3), Franklin (PENN-4), and York (PENN-7) Counties, PA. Four species, Aphis fabae, A. spiraecola, Brachycaudus persicae, and Myzus persicae, consistently transmitted PPV in preliminary transmission tests. Two species, Metopolophium dirhodum and Rhopalosiphum padi, were occasional inefficient vectors. Toxoptera citricida, from Florida, also was an effective vector but it does not occur in major stone-fruit-growing states. Species not transmitting PPV in parallel tests included Acyrthosiphon pisum, Aphis glycines, Aulacorthum solani, Macrosiphum euphorbiae, Rhopalosiphum maidis, and Sitobion avenae. When given a 3-day probing access period simultaneously on PPV-infected peach seedlings and healthy peach seedlings, Myzus persicae, Aphis spiraecola, A. fabae, and B. persicae transmitted PPV to 63, 31, 38, and 32% of the healthy peach seedlings, respectively. When given a similar probing period on PPV-infected peach fruit and healthy peach seedlings, the same aphid species transmitted PPV to 50, 35, 0, and 0% of seedlings, respectively. Results support the hypothesis of secondary PPV spread by indigenous aphids in Pennsylvania, and suggest that PPV-infected fruit has the potential to function as a virus source for long-distance dispersal.

8.
Annu Rev Phytopathol ; 41: 539-66, 2003.
Article in English | MEDLINE | ID: mdl-12730400

ABSTRACT

Members of the Luteoviridae are transmitted by aphids in a circulative, nonpropagative manner that requires the virus to be acquired through gut tissue into the aphid hemocoel and then exit through salivary tissues. This process is aphid species-specific and involves specific recognition of the virus by unidentified components on the membranes of gut and salivary tissues. Transport through the tissues is an endocytosis/exocytosis process. Both structural proteins of the virus are involved in the transmission process, with multiple protein domains regulating the movement and survival of the virus in the aphid and plant. Here we review what is known about the genetic, cellular, and molecular mechanisms regulating these complex and specific virus-aphid interactions.


Subject(s)
Aphids/physiology , Luteovirus/physiology , Animals , Insect Vectors , Salivary Glands/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...