Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Anaesth Intensive Care ; : 310057X241242813, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879796

ABSTRACT

The regional and rural intensivist workforce is vital to delivering high standards of healthcare to all Australians. Currently, there is an impending workforce disaster, with higher senior medical officer vacancy rates among regional and rural intensive care units, with these units being staffed by junior doctors who are in earlier stages of their training, which in turn increases supervisory burden. There is a lack of comprehensive literature on the barriers and enablers of training, recruiting and retaining regional and rural intensivists. To address this gap, a qualitative study was conducted, involving 13 in-depth, structured interviews with full-time and part-time intensivists from eight Australian regional and rural hospitals. Content analysis of the interview data resulted in the identification of four major categories: unique practice context, need for a broad generalist skill set, perks and challenges of working in a regional/rural area and workforce implications. The study findings revealed that regional and rural intensive care practice offers positive aspects, including work satisfaction, supportive local teams and an appealing lifestyle. However, these benefits are counterbalanced by challenges such as a heavier burden of on-call work, a higher proportion of junior staff which increase supervisory burden and limited access to subspecialist services. The implications of these findings are noteworthy and can be utilised to inform government policies, hospitals, the College of Intensive Care Medicine and the Australian and New Zealand College of Anaesthetists in developing strategies to enhance the provision of intensive care services and improve workforce planning in regional and rural areas.

2.
Nano Lett ; 21(19): 7921-7928, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34534432

ABSTRACT

The hyperbolic phonon polaritons supported in hexagonal boron nitride (hBN) with long scattering lifetimes are advantageous for applications such as super-resolution imaging via hyperlensing. Yet, hyperlens imaging is challenging for distinguishing individual and closely spaced objects and for correlating the complicated hyperlens fields with the structure of an unknown object underneath. Here, we make significant strides to overcome each of these challenges. First, we demonstrate that monoisotopic h11BN provides significant improvements in spatial resolution, experimentally resolving structures as small as 44 nm and those with sub 25 nm spacings at 6.76 µm free-space wavelength. We also present an image reconstruction algorithm that provides a structurally accurate, visual representation of the embedded objects from the complex hyperlens field. Further, we offer additional insights into optimizing hyperlens performance on the basis of material properties, with an eye toward realizing far-field imaging modalities. Thus, our results significantly advance label-free, high-resolution, spectrally selective hyperlens imaging and image reconstruction methodologies.


Subject(s)
Microscopy , Phonons , Image Processing, Computer-Assisted
3.
Opt Express ; 29(8): 11760-11772, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33984951

ABSTRACT

We report the first experimental observation of hyperbolic phonon polariton (HP) resonances in calcite nanopillars, demonstrate that the HP modes redshift with increasing aspect ratio (AR = 0.5 to 1.1), observe a new, possibly higher order mode as the pitch is reduced, and compare the results to both numerical simulations and an analytical model. This work shows that a wide variety of polar dielectric materials can support phonon polaritons by demonstrating HPs in a new material, which is an important first step towards creating a library of materials with the appropriate phonon properties to extend phonon polariton applications throughout the infrared.

4.
Nat Mater ; 18(9): 1024, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31371814

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
ACS Nano ; 13(6): 6730-6741, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31184132

ABSTRACT

Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources.

6.
Nat Commun ; 10(1): 1682, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975986

ABSTRACT

Phonon polaritons, hybrid light-matter quasiparticles resulting from strong coupling of the electromagnetic field with the lattice vibrations of polar crystals are a promising platform for mid-infrared photonics but for the moment there has been no proposal allowing for their electrical pumping. Electrical currents in fact mainly generate longitudinal optical phonons, while only transverse ones participate in the creation of phonon polaritons. We demonstrate how to exploit long-cell polytypes of silicon carbide to achieve strong coupling between transverse phonon polaritons and zone-folded longitudinal optical phonons. We develop a microscopic theory predicting the existence of the resulting hybrid longitudinal-transverse excitations. We then provide an experimental observation by tuning the resonance of a nanopillar array through the folded longitudinal optical mode, obtaining a clear spectral anti-crossing. The hybridisation of phonon polaritons with longitudinal phonons could represent an important step toward the development of phonon polariton-based electrically pumped mid-infrared emitters.

7.
Opt Express ; 26(22): 29363-29374, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470101

ABSTRACT

Gap surface plasmons (GSPs) serve a diverse range of plasmonic applications, including energy harvesting, communications, molecular sensing, and optical detection. GSPs may be realized where tightly spaced plasmonic structures exhibit strong spatial overlap between the evanescent fields. We demonstrate that within similar, nested geometries that the near-fields of the GSPs within the individual nanostructures are hybridized. This creates two or more distinct resonances exhibiting near-field distributions extended over adjacent spatial regions. In contrast, dissimilar, nested structures exhibit two distinct resonances with nominally uncoupled near-fields, resulting in two or more individual antenna resonance modes. We deploy plasmonic band structure calculations to provide insight into the type and degree of hybridization within these systems, comparing the individual components. This understanding can be used in the optimized design of polaritonic metamaterial structures for desired applications.

8.
Opt Lett ; 43(9): 2177-2180, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29714783

ABSTRACT

Phonon polaritons (PhPs) are long-lived electromagnetic modes that originate from the coupling of infrared (IR) photons with the bound ionic lattice of a polar crystal. Cubic-boron nitride (cBN) is such a polar, semiconductor material which, due to the light atomic masses, can support high-frequency optical phonons. Here we report on random arrays of cBN nanostructures fabricated via an unpatterned reactive ion etching process. Fourier-transform infrared reflection spectra suggest the presence of localized surface PhPs within the reststrahlen band, with quality factors in excess of 38 observed. These can provide the basis of next-generation IR optical components such as antennas for communication, improved chemical spectroscopies, and enhanced emitters, sources, and detectors.

9.
Nano Lett ; 18(3): 1628-1636, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29451802

ABSTRACT

The inherent crystal anisotropy of hexagonal boron nitride (hBN) provides the ability to support hyperbolic phonon polaritons, that is, polaritons that can propagate with very large wave vectors within the material volume, thereby enabling optical confinement to exceedingly small dimensions. Indeed, previous research has shown that nanometer-scale truncated nanocone hBN cavities, with deep subdiffractional dimensions, support three-dimensionally confined optical modes in the mid-infrared. Because of optical selection rules, only a few of the many theoretically predicted modes have been observed experimentally via far-field reflection and scattering-type scanning near-field optical microscopy (s-SNOM). The photothermal induced resonance (PTIR) technique probes optical and vibrational resonances overcoming weak far-field emission by leveraging an atomic force microscope (AFM) probe to transduce local sample expansion caused by light absorption. Here we show that PTIR enables the direct observation of previously unobserved, dark hyperbolic modes of hBN nanostructures. Leveraging these optical modes and their wide range of angular and radial momenta could provide a new degree of control over the electromagnetic near-field concentration, polarization in nanophotonic applications.

10.
Nat Mater ; 17(2): 134-139, 2018 02.
Article in English | MEDLINE | ID: mdl-29251721

ABSTRACT

Conventional optical components are limited to size scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called 'flat' optical components that beget abrupt changes in these properties over distances significantly shorter than the free-space wavelength. Although high optical losses still plague many approaches, phonon polariton (PhP) materials have demonstrated long lifetimes for sub-diffractional modes in comparison to plasmon-polariton-based nanophotonics. We experimentally observe a threefold improvement in polariton lifetime through isotopic enrichment of hexagonal boron nitride (hBN). Commensurate increases in the polariton propagation length are demonstrated via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach aimed at realizing the loss control necessary for the development of PhP-based nanophotonic devices.

11.
Nano Lett ; 16(11): 6954-6959, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27766887

ABSTRACT

We report on the strong enhancement of mid-infrared second-harmonic generation (SHG) from SiC nanopillars due to the resonant excitation of localized surface phonon polaritons within the Reststrahlen band. A strong dependence of the SHG enhancement upon the optical mode distribution was observed. One such mode, the monopole, exhibits an enhancement that is beyond what is anticipated from field localization and dispersion of the linear and nonlinear SiC optical properties. Comparing the results for the identical nanostructures made of 4H and 6H SiC polytypes, we demonstrate the interplay of localized surface phonon polaritons with zone-folded weak phonon modes of the anisotropic crystal. Tuning the monopole mode in and out of the region where the zone-folded phonon is excited in 6H-SiC, we observe a further prominent increase of the already enhanced SHG output when the two modes are coupled. Envisioning this interplay as one of the showcase features of mid-infrared nonlinear nanophononics, we discuss its prospects for the effective engineering of nonlinear-optical materials with desired properties in the infrared spectral range.

12.
Sci Rep ; 6: 32959, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27622525

ABSTRACT

Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known as surface phonon polaritons (SPhPs), have been observed in polar dielectric optical resonators. In the present work, we investigate the excitation of 16 distinct high-order, multipolar, localized surface phonon polariton resonances that are optically excited in rectangular pillars etched into a semi-insulating silicon carbide substrate. By elongating a single pillar axis we are able to significantly modify the far- and near-field properties of localized SPhP resonances, opening the door to realizing narrow-band infrared sources with tailored radiation patterns. Such control of the near-field behavior of resonances can also impact surface enhanced infrared optical sensing, which is mediated by polarization selection rules, as well as the morphology and strength of resonator hot spots. Furthermore, through the careful choice of polar dielectric material, these results can also serve as the guiding principles for the generalized design of optical devices that operate from the mid- to far-infrared.

13.
Nano Lett ; 16(6): 3858-65, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27159255

ABSTRACT

We use scanning near-field optical microscopy to study the response of hexagonal boron nitride nanocones at infrared frequencies, where this material behaves as a hyperbolic medium. The obtained images are dominated by a series of "hot" rings that occur on the sloped sidewalls of the nanocones. The ring positions depend on the incident laser frequency and the nanocone shape. Both dependences are consistent with directional propagation of hyperbolic phonon-polariton rays that are launched at the edges and zigzag through the interior of the nanocones, sustaining multiple internal reflections off the sidewalls. Additionally, we observe a strong overall enhancement of the near-field signal at discrete resonance frequencies. These resonances attest to low dielectric losses that permit coherent standing waves of the subdiffractional polaritons to form. We comment on potential applications of such shape-dependent resonances and the field concentration at the hot rings.

14.
Nat Commun ; 5: 5221, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25323633

ABSTRACT

Strongly anisotropic media, where the principal components of the dielectric tensor have opposite signs, are called hyperbolic. Such materials exhibit unique nanophotonic properties enabled by the highly directional propagation of slow-light modes localized at deeply sub-diffractional length scales. While artificial hyperbolic metamaterials have been demonstrated, they suffer from high plasmonic losses and require complex nanofabrication, which in turn induces size-dependent limitations on optical confinement. The low-loss, mid-infrared, natural hyperbolic material hexagonal boron nitride is an attractive alternative. Here we report on three-dimensionally confined 'hyperbolic polaritons' in boron nitride nanocones that support four series (up to the seventh order) modes in two spectral bands. The resonant modes obey the predicted aspect ratio dependence and exhibit high-quality factors (Q up to 283) in the strong confinement regime (up to λ/86). These observations assert hexagonal boron nitride as a promising platform for studying novel regimes of light-matter interactions and nanophotonic device engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...