Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Nutr ; 11: 1301427, 2024.
Article in English | MEDLINE | ID: mdl-38660060

ABSTRACT

Background: High glycemic variability (GV) is a biomarker of cancer risk, even in the absence of diabetes. The emerging concept of chrononutrition suggests that modifying meal timing can favorably impact metabolic risk factors linked to diet-related chronic disease, including breast cancer. Here, we examined the potential of eating when glucose levels are near personalized fasting thresholds (low-glucose eating, LGE), a novel form of timed-eating, to reduce GV in women without diabetes, who are at risk for postmenopausal breast cancer. Methods: In this exploratory analysis of our 16-week weight loss randomized controlled trial, we included 17 non-Hispanic, white, postmenopausal women (average age = 60.7 ± 5.8 years, BMI = 34.5 ± 6.1 kg/m2, HbA1c = 5.7 ± 0.3%). Participants were those who, as part of the parent study, provided 3-7 days of blinded, continuous glucose monitoring data and image-assisted, timestamped food records at weeks 0 and 16. Pearson's correlation and multivariate regression were used to assess associations between LGE and GV, controlling for concurrent weight changes. Results: Increases in LGE were associated with multiple unfavorable measures of GV including reductions in CGM glucose mean, CONGA, LI, J-Index, HBGI, ADDR, and time spent in a severe GV pattern (r = -0.81 to -0.49; ps < 0.044) and with increases in favorable measures of GV including M-value and LBGI (r = 0.59, 0.62; ps < 0.013). These associations remained significant after adjusting for weight changes. Conclusion: Low-glucose eating is associated with improvements in glycemic variability, independent of concurrent weight reductions, suggesting it may be beneficial for GV-related disease prevention. Further research in a larger, more diverse sample with poor metabolic health is warranted.Clinical trial registration: ClinicalTrials.gov, NCT03546972.

2.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543182

ABSTRACT

Over the last several decades, a growing body of research has investigated the potential to repurpose the anti-diabetic drug metformin for breast cancer prevention and/or treatment. Observational studies in the early 2000s demonstrated that patients with diabetes taking metformin had decreased cancer risk, providing the first evidence supporting the potential role of metformin as an anti-cancer agent. Despite substantial efforts, two decades later, the exact mechanisms and clinical efficacy of metformin for breast cancer remain ambiguous. Here, we have summarized key findings from studies examining the effect of metformin on breast cancer across the translational spectrum including in vitro, in vivo, and human studies. Importantly, we discuss critical factors that may help explain the significant heterogeneity in study outcomes, highlighting how metformin dose, underlying metabolic health, menopausal status, tumor subtype, membrane transporter expression, diet, and other factors may play a role in modulating metformin's anti-cancer effects. We hope that these insights will help with interpreting data from completed studies, improve the design of future studies, and aid in the identification of patient subsets with breast cancer or at high risk for the disease who are most likely to benefit from metformin treatment.

3.
Cancers (Basel) ; 15(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37568578

ABSTRACT

Diet plays a critical role for patients across the cancer continuum. The World Cancer Research Fund International and the American Cancer Society have published evidence supporting the role of nutrition in cancer prevention. We conducted an analysis of the literature on dietary nutrients and cancer to uncover opportunities for future research. The objective of the bibliometric analysis was to describe trends in peer-reviewed publications on dietary components and cancer and to highlight research gaps. PubMed was queried for manuscripts with diet- and cancer-related keywords and Medical Subject Headings (MeSH) terms. Metadata covering 99,784 publications from 6469 journals were analyzed to identify trends since 1970 on diet topics across 19 tumor types. Publications focused largely on breast, colorectal, and liver cancer, with fewer papers linking diet with other cancers such as brain, gallbladder, or ovarian. With respect to "unhealthy" diets, many publications focused on high-fat diets and alcohol consumption. The largest numbers of publications related to "healthy" diets examined the Mediterranean diet and the consumption of fruits and vegetables. These findings highlight the need for additional research focused on under-investigated cancers and dietary components, as well as dietary studies during cancer therapy and post-therapy, which may help to prolong survivorship.

4.
Cell Death Differ ; 30(6): 1472-1487, 2023 06.
Article in English | MEDLINE | ID: mdl-36966227

ABSTRACT

The functionally differentiated mammary gland adapts to extreme levels of stress from increased demand for energy by activating specific protective mechanisms to support neonatal health. Here, we identify the breast tumor suppressor gene, single-minded 2 s (SIM2s) as a novel regulator of mitophagy, a key component of this stress response. Using tissue-specific mouse models, we found that loss of Sim2 reduced lactation performance, whereas gain (overexpression) of Sim2s enhanced and extended lactation performance and survival of mammary epithelial cells (MECs). Using an in vitro model of MEC differentiation, we observed SIM2s is required for Parkin-mediated mitophagy, which we have previously shown as necessary for functional differentiation. Mechanistically, SIM2s localizes to mitochondria to directly mediate Parkin mitochondrial loading. Together, our data suggest that SIM2s regulates the rapid recycling of mitochondria via mitophagy, enhancing the function and survival of differentiated MECs.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Mitophagy , Mice , Female , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Epithelial Cells , Disease Models, Animal , Ubiquitin-Protein Ligases/genetics
5.
Breast Cancer Res ; 24(1): 42, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725493

ABSTRACT

BACKGROUND: Obesity and adult weight gain are linked to increased breast cancer risk and poorer clinical outcomes in postmenopausal women, particularly for hormone-dependent tumors. Menopause is a time when significant weight gain occurs in many women, and clinical and preclinical studies have identified menopause (or ovariectomy) as a period of vulnerability for breast cancer development and promotion. METHODS: We hypothesized that preventing weight gain after ovariectomy (OVX) may be sufficient to prevent the formation of new tumors and decrease growth of existing mammary tumors. We tested this hypothesis in a rat model of obesity and carcinogen-induced postmenopausal mammary cancer and validated our findings in a murine xenograft model with implanted human tumors. RESULTS: In both models, preventing weight gain after OVX significantly decreased obesity-associated tumor development and growth. Importantly, we did not induce weight loss in these animals, but simply prevented weight gain. In both lean and obese rats, preventing weight gain reduced visceral fat accumulation and associated insulin resistance. Similarly, the intervention decreased circulating tumor-promoting growth factors and inflammatory cytokines (i.e., BDNF, TNFα, FGF-2), with greater effects in obese compared to lean rats. In obese rats, preventing weight gain decreased adipocyte size, adipose tissue macrophage infiltration, reduced expression of the tumor-promoting growth factor FGF-1 in mammary adipose, and reduced phosphorylated FGFR indicating reduced FGF signaling in tumors. CONCLUSIONS: Together, these findings suggest that the underlying mechanisms associated with the anti-tumor effects of weight maintenance are multi-factorial, and that weight maintenance during the peri-/postmenopausal period may be a viable strategy for reducing obesity-associated breast cancer risk and progression in women.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/chemically induced , Breast Neoplasms/prevention & control , Female , Humans , Mice , Obesity/complications , Obesity/metabolism , Ovariectomy , Postmenopause , Rats , Rodentia , Tumor Burden , Weight Gain
6.
Biomolecules ; 12(4)2022 03 22.
Article in English | MEDLINE | ID: mdl-35454071

ABSTRACT

Ghrelin, a hormone produced and secreted from the stomach, is prim arily known as an appetite stimulant. Recently, it has emerged as a potential regulator/biomarker of cancer progression. Inconsistent results on this subject make this body of literature difficult to interpret. Here, we attempt to identify commonalities in the relationships between ghrelin and various cancers, and summarize important considerations for future research. The main players in the ghrelin family axis are unacylated ghrelin (UAG), acylated ghrelin (AG), the enzyme ghrelin O-acyltransferase (GOAT), and the growth hormone secretagogue receptor (GHSR). GOAT is responsible for the acylation of ghrelin, after which ghrelin can bind to the functional ghrelin receptor GHSR-1a to initiate the activation cascade. Splice variants of ghrelin also exist, with the most prominent being In1-ghrelin. In this review, we focus primarily on the potential of In1-ghrelin as a biomarker for cancer progression, the unique characteristics of UAG and AG, the importance of the two known receptor variants GHSR-1a and 1b, as well as the possible mechanisms through which the ghrelin axis acts. Further understanding of the role of the ghrelin axis in tumor cell proliferation could lead to the development of novel therapeutic approaches for various cancers.


Subject(s)
Ghrelin , Neoplasms , Acylation , Ghrelin/genetics , Ghrelin/metabolism , Humans , Neoplasms/genetics , Receptors, Ghrelin/genetics
7.
Neurotrauma Rep ; 3(1): 70-86, 2022.
Article in English | MEDLINE | ID: mdl-35112109

ABSTRACT

Spinal cord injuries (SCIs) are often the result of traumatic accidents, which also produce multiple other injuries (polytrauma). Nociceptive input from associated injuries has been shown to significantly impair recovery post-SCI. Historically, work in our laboratory has focused exclusively on male animals; however, increasing incidence of SCI in females requires research to determine whether pain (nociceptive) input poses the same risk to their recovery. Some animal studies have shown that females demonstrate greater tissue preservation and better locomotor recovery post-SCI. Given this, we examined the effect of sex on SCI recovery in two pain models-intermittent electrical stimulation (shock) to the tail or capsaicin injection to the hindpaw. Female rats received a lower thoracic contusion injury and were exposed to noxious stimulation the next day. The acute effect of noxious input on cardiovascular function, locomotor performance, and hemorrhage were assessed. Treatment with capsaicin or noxious electrical stimulation disrupted locomotor performance, increased blood pressure, and disrupted stepping. Additional experiments examined the long-term consequences of noxious input, demonstrating that both noxious electrical stimulation and capsaicin impair long-term recovery in female rats. Interestingly, injury had a greater effect on behavioral performance when progesterone and estrogen were low (metestrus). Conversely, nociceptive input led to a greater disruption in locomotor performance and produced a greater rise in blood pressure in animals injured during estrus.

8.
Nutrients ; 13(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34960058

ABSTRACT

Postmenopausal breast cancer is the most common obesity-related cancer death among women in the U.S. Insulin resistance, which worsens in the setting of obesity, is associated with higher breast cancer incidence and mortality. Maladaptive eating patterns driving insulin resistance represent a key modifiable risk factor for breast cancer. Emerging evidence suggests that time-restricted feeding paradigms (TRF) improve cancer-related metabolic risk factors; however, more flexible approaches could be more feasible and effective. In this exploratory, secondary analysis, we identified participants following a low-glucose eating pattern (LGEP), defined as consuming energy when glucose levels are at or below average fasting levels, as an alternative to TRF. Results show that following an LGEP regimen for at least 40% of reported eating events improves insulin resistance (HOMA-IR) and other cancer-related serum biomarkers. The magnitude of serum biomarkers changes observed here has previously been shown to favorably modulate benign breast tissue in women with overweight and obesity who are at risk for postmenopausal breast cancer. By comparison, the observed effects of LGEP were similar to results from previously published TRF studies in similar populations. These preliminary findings support further testing of LGEP as an alternative to TRF and a postmenopausal breast cancer prevention strategy. However, results should be interpreted with caution, given the exploratory nature of analyses.


Subject(s)
Breast Neoplasms/prevention & control , Diet/methods , Fasting/blood , Obesity/diet therapy , Postmenopause/blood , Biomarkers/blood , Blood Glucose/metabolism , Breast/metabolism , Breast Neoplasms/etiology , Feasibility Studies , Feeding Behavior/physiology , Female , Humans , Insulin Resistance , Middle Aged , Obesity/blood , Obesity/complications
9.
Cancers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638355

ABSTRACT

Aerobic exercise reduces risk for breast cancer and recurrence and promotes visceral adipose tissue (VAT) loss in obesity. However, few breast cancer survivors achieve recommended levels of moderate to vigorous physical activity (MVPA) without supervision. In a two-cohort study, feasibility of 12 weeks of partially supervised exercise was started concomitantly with caloric restriction and effects on body composition and systemic risk biomarkers were explored. In total, 22 obese postmenopausal sedentary women (including 18 breast cancer survivors) with median age of 60 and BMI of 37 kg/m2 were enrolled. Using personal trainers twice weekly at area YMCAs, MVPA was escalated to ≥200 min/week over 9 weeks. For cohort 2, maintenance of effect was assessed when study provided trainer services were stopped but monitoring, group counseling sessions, and access to the exercise facility were continued. Median post-escalation MVPA was 219 min/week with median 12-week mass and VAT loss of 8 and 19%. MVPA was associated with VAT loss which was associated with improved adiponectin:leptin ratio. In total, 9/11 of cohort-2 women continued the behavioral intervention for another 12 weeks without trainers. High MVPA continued with median 24-week mass and VAT loss of 12 and 29%. This intervention should be further studied in obese sedentary women.

10.
Annu Rev Nutr ; 41: 253-282, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34357792

ABSTRACT

Diet and nutrition are intricately related to cancer prevention, growth, and treatment response. Preclinical rodent models are a cornerstone to biomedical research and remain instrumental in our understanding of the relationship between cancer and diet and in the development of effective therapeutics. However, the success rate of translating promising findings from the bench to the bedside is suboptimal. Well-designed rodent models will be crucial to improving the impact basic science has on clinical treatment options. This review discusses essential experimental factors to consider when designing a preclinical cancer model with an emphasis on incorporatingthese models into studies interrogating diet, nutrition, and metabolism. The aims of this review are to (a) provide insight into relevant considerations when designing cancer models for obesity, nutrition, and metabolism research; (b) identify common pitfalls when selecting a rodent model; and (c) discuss strengths and limitations of available preclinical models.


Subject(s)
Neoplasms , Rodentia , Animals , Diet , Humans , Nutritional Status , Obesity/prevention & control
11.
Cancer Prev Res (Phila) ; 14(9): 893-904, 2021 09.
Article in English | MEDLINE | ID: mdl-34244155

ABSTRACT

The inflammation-resolving and insulin-sensitizing properties of eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids have potential to augment effects of weight loss on breast cancer risk. In a feasibility study, 46 peri/postmenopausal women at increased risk for breast cancer with a body mass index (BMI) of 28 kg/m2 or greater were randomized to 3.25 g/day combined EPA and DHA (ω-3-FA) or placebo concomitantly with initiation of a weight-loss intervention. Forty-five women started the intervention. Study discontinuation for women randomized to ω-3-FA and initiating the weight-loss intervention was 9% at 6 months and thus satisfied our main endpoint, which was feasibility. Between baseline and 6 months significant change (P < 0.05) was observed in 12 of 25 serum metabolic markers associated with breast cancer risk for women randomized to ω-3-FA, but only four for those randomized to placebo. Weight loss (median of 10% for trial initiators and 12% for the 42 completing 6 months) had a significant impact on biomarker modulation. Median loss was similar for placebo (-11%) and ω-3-FA (-13%). No significant change between ω-3-FA and placebo was observed for individual biomarkers, likely due to sample size and effect of weight loss. Women randomized to ω-3-FA exhibiting more than 10% weight loss at 6 months showed greatest biomarker improvement including 6- and 12-month serum adiponectin, insulin, omentin, and C-reactive protein (CRP), and 12-month tissue adiponectin. Given the importance of a favorable adipokine profile in countering the prooncogenic effects of obesity, further evaluation of high-dose ω-3-FA during a weight-loss intervention in obese high-risk women should be considered. PREVENTION RELEVANCE: This study examines biomarkers of response that may be modulated by omega-3 fatty acids when combined with a weight-loss intervention. While focused on obese, postmenopausal women at high risk for development of breast cancer, the findings are applicable to other cancers studied in clinical prevention trials.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/prevention & control , Fatty Acids, Omega-3/administration & dosage , Weight Loss/physiology , Weight Reduction Programs , Adult , Aged , Behavior Therapy , Biomarkers, Tumor/blood , Breast/metabolism , Breast/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caloric Restriction , Cytodiagnosis , Dietary Supplements , Exercise/physiology , Feasibility Studies , Female , Humans , Middle Aged , Neoplasm Staging , Obesity/diet therapy , Obesity/metabolism , Obesity/therapy , Placebos , Precancerous Conditions/diagnosis , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Weight Reduction Programs/methods
12.
J Mammary Gland Biol Neoplasia ; 25(4): 237-253, 2020 12.
Article in English | MEDLINE | ID: mdl-33146844

ABSTRACT

Obesity increases the risk for breast cancer and is associated with poor outcomes for cancer patients. A variety of rodent models have been used to investigate these relationships; however, key differences in experimental approaches, as well as unique aspects of rodent physiology lead to variability in how these valuable models are implemented. We combine expertise in the development and implementation of preclinical models of obesity and breast cancer to disseminate effective practices for studies that integrate these fields. In this review, we share, based on our experience, key considerations for model selection, highlighting important technical nuances and tips for use of preclinical models in studies that integrate obesity with breast cancer risk and progression. We describe relevant mouse and rat paradigms, specifically highlighting differences in breast tumor subtypes, estrogen production, and strategies to manipulate hormone levels. We also outline options for diet composition and housing environments to promote obesity in female rodents. While we have applied our experience to understanding obesity-associated breast cancer, the experimental variables we incorporate have relevance to multiple fields that investigate women's health.


Subject(s)
Breast Neoplasms/etiology , Breast/pathology , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/pathology , Obesity/complications , Adiposity/physiology , Animals , Breast Neoplasms/pathology , Breast Neoplasms/physiopathology , Carcinogenesis/chemically induced , Carcinogenesis/pathology , Carcinogens/administration & dosage , Carcinogens/toxicity , Cell Line, Tumor , Diet, High-Fat/adverse effects , Dietary Sugars/administration & dosage , Dietary Sugars/adverse effects , Female , Humans , Mammary Glands, Animal/drug effects , Mammary Neoplasms, Experimental/etiology , Mammary Neoplasms, Experimental/physiopathology , Menopause/physiology , Mice , Mice, Transgenic , Obesity/pathology , Obesity/physiopathology , Rats , Xenograft Model Antitumor Assays
13.
Nutrients ; 11(10)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623184

ABSTRACT

The in vivo net energy content of resistant starch (RS) has not been measured in humans so it has not been possible to account for the contribution of RS to dietary energy intake. We aimed to determine the in vivo net energy content of RS and examine its effect on macronutrient oxidation. This was a randomized, double-blind cross-over study. Eighteen healthy adults spent 24 h in a whole room indirect calorimeter to measure total energy expenditure (TEE), substrate oxidation, and postprandial metabolites in response to three diets: 1) digestible starch (DS), 2) RS (33% dietary fiber; RS), or 3) RS with high fiber (RSF, 56% fiber). The in vivo net energy content of RS and RSF are 2.74 ± 0.41 and 3.16 ± 0.27 kcal/g, respectively. There was no difference in TEE or protein oxidation between DS, RS, and RSF. However, RS and RSF consumption caused a 32% increase in fat oxidation (p = 0.04) with a concomitant 18% decrease in carbohydrate oxidation (p = 0.03) versus DS. Insulin responses were unaltered after breakfast but lower in RS and RSF after lunch, at equivalent glucose concentrations, indicating improved insulin sensitivity. The average in vivo net energy content of RS is 2.95 kcal/g, regardless of dietary fiber content. RS and RSF consumption increase fat and decrease carbohydrate oxidation with postprandial insulin responses lowered after lunch, suggesting improved insulin sensitivity at subsequent meals.


Subject(s)
Dietary Carbohydrates/metabolism , Dietary Fats/metabolism , Energy Intake , Nutritive Value , Starch/metabolism , Adult , Biomarkers/blood , Blood Glucose/metabolism , Colorado , Cross-Over Studies , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism , Double-Blind Method , Female , Healthy Volunteers , Humans , Insulin/blood , Insulin Resistance , Male , Oxidation-Reduction , Postprandial Period , Starch/administration & dosage , Time Factors , Triglycerides/blood
14.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R684-R695, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31553623

ABSTRACT

Exercise is a potent facilitator of long-term weight loss maintenance (WLM), whereby it decreases appetite and increases energy expenditure beyond the cost of the exercise bout. We have previously shown that exercise may amplify energy expenditure through energetically expensive nutrient deposition. Therefore, we investigated the effect of exercise on hepatic de novo lipogenesis (DNL) during WLM and relapse to obesity. Obese rats were calorically restricted with (EX) or without (SED) treadmill exercise (1 h/day, 6 days/wk, 15 m/min) to induce and maintain weight loss. After 6 wk of WLM, subsets of WLM-SED and WLM-EX rats were allowed ad libitum access to food for 1 day to promote relapse (REL). An energy gap-matched group of sedentary, relapsing rats (REL-GM) were provided a diet matched to the positive energy imbalance of the REL-EX rats. During relapse, exercise increased enrichment of hepatic DN-derived lipids and induced hepatic molecular adaptations favoring DNL compared with the gap-matched controls. In the liver, compared with both REL-SED and REL-GM rats, REL-EX rats had lower hepatic expression of genes required for cholesterol biosynthesis; greater hepatic expression of genes that mediate very low-density lipoprotein synthesis and secretion; and greater mRNA expression of Cyp27a1, which encodes an enzyme involved in the biosynthesis of bile acids. Altogether, these data provide compelling evidence that the liver has an active role in exercise-mediated potentiation of energy expenditure during early relapse.


Subject(s)
Cholesterol/biosynthesis , Energy Metabolism , Lipogenesis , Liver/metabolism , Obesity/therapy , Physical Conditioning, Animal , Weight Gain , Weight Loss , Animals , Bile Acids and Salts/biosynthesis , Caloric Restriction , Disease Models, Animal , Energy Metabolism/genetics , Gene Expression Regulation, Enzymologic , Insulin/blood , Lipogenesis/genetics , Male , Obesity/genetics , Obesity/metabolism , Obesity/physiopathology , Recurrence , Running , Time Factors , Transcription Factors/genetics , Transcription Factors/metabolism
15.
Med Sci Sports Exerc ; 51(12): 2465-2473, 2019 12.
Article in English | MEDLINE | ID: mdl-31274683

ABSTRACT

The purpose of this study was to determine whether obesity and/or exercise training alters weight regain and musculoskeletal health after ovariectomy (OVX). Female rats were fed high-fat diet (HFD) to reveal obesity-prone (OP) and obesity-resistant (OR) phenotypes. The OP and OR exercising (EX) and sedentary (SED) rats were calorically restricted to lose 15% of body weight using medium-fat diet. Rats were then maintained in energy balance for 8 wk before OVX. After OVX and a brief calorically limited phase, rats were allowed to eat ad libitum until body weight plateaued. Starting at weight loss, EX ran 1 h·d, 6 d·wk, 15 m·min. Energy intake, spontaneous physical activity (SPA), and total energy expenditure were evaluated at the end of weight maintenance pre-OVX, and at three time points post-OVX: before weight regain, during early regain, and after regain. Data are presented as mean ± SE. Exercise attenuated weight regain after OVX in OP only (OP-EX, 123 ± 10 g; OP-SED, 165 ± 12 g; OR-EX, 121 ± 6 g; OR-SED, 116 ± 6 g), which was primarily an attenuation of fat gain. The early post-OVX increase in energy intake explained much of the weight regain, and was similar across groups. Exercising improved bone strength, as did maintaining SPA. Group differences in muscle mitochondrial respiration were not significant. The large decrease in SPA due to OVX was persistent, but early weight regain was dependent on decreased SPA. In conclusion, leanness and exercise do not necessarily protect from OVX-induced weight gain. Exercise prevented weight gain in obese rats, but loss of SPA was the greatest contributor to post-OVX weight gain. Thus, understanding the mechanisms resulting in reduction in SPA after ovarian hormone loss is critical in the prevention of menopause-associated metabolic dysfunction.


Subject(s)
Bone Density/physiology , Menopause/physiology , Mitochondria, Muscle/physiology , Obesity/physiopathology , Oxygen Consumption/physiology , Physical Conditioning, Animal/physiology , Weight Gain/physiology , Animals , Body Composition/physiology , Energy Metabolism , Female , Models, Animal , Muscle, Skeletal/physiology , Ovariectomy , Rats, Wistar
16.
Breast Cancer Res ; 20(1): 50, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29898754

ABSTRACT

BACKGROUND: Obesity and type II diabetes are linked to increased breast cancer risk in postmenopausal women. Patients treated with the antidiabetic drug metformin for diabetes or metabolic syndrome have reduced breast cancer risk, a greater pathologic complete response to neoadjuvant therapy, and improved breast cancer survival. We hypothesized that metformin may be especially effective when targeted to the menopausal transition, as this is a lifecycle window when weight gain and metabolic syndrome increase, and is also when the risk for obesity-related breast cancer increases. METHODS: Here, we used an 1-methyl-1-nitrosourea (MNU)-induced mammary tumor rat model of estrogen receptor (ER)-positive postmenopausal breast cancer to evaluate the long-term effects of metformin administration on metabolic and tumor endpoints. In this model, ovariectomy (OVX) induces rapid weight gain, and an impaired whole-body response to excess calories contributes to increased tumor glucose uptake and increased tumor proliferation. Metformin treatment was initiated in tumor-bearing animals immediately prior to OVX and maintained for the duration of the study. RESULTS: Metformin decreased the size of existing mammary tumors and inhibited new tumor formation without changing body weight or adiposity. Decreased lipid accumulation in the livers of metformin-treated animals supports the ability of metformin to improve overall metabolic health. We also found a decrease in the number of aromatase-positive, CD68-positive macrophages within the tumor microenvironment, suggesting that metformin targets the immune microenvironment in addition to improving whole-body metabolism. CONCLUSIONS: These findings suggest that peri-menopause/menopause represents a unique window of time during which metformin may be highly effective in women with established, or at high risk for developing, breast cancer.


Subject(s)
Aromatase/genetics , Breast Neoplasms/drug therapy , Mammary Neoplasms, Animal/drug therapy , Metformin/administration & dosage , Animals , Breast/drug effects , Breast/immunology , Breast/pathology , Breast Neoplasms/chemically induced , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Progression , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/immunology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mammary Neoplasms, Animal/chemically induced , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Methylnitrosourea/toxicity , Ovariectomy , Postmenopause/drug effects , Postmenopause/genetics , Postmenopause/immunology , Rats , Stromal Cells/drug effects , Stromal Cells/enzymology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
17.
Horm Cancer ; 8(5-6): 269-285, 2017 12.
Article in English | MEDLINE | ID: mdl-28741260

ABSTRACT

The androgen receptor (AR) has context-dependent roles in breast cancer growth and progression. Overall, high tumor AR levels predict a favorable patient outcome, but several studies have established a tumor promotional role for AR, particularly in supporting the growth of estrogen receptor positive (ER-positive) breast cancers after endocrine therapy. Our previous studies have demonstrated that obesity promotes mammary tumor progression after ovariectomy (OVX) in a rat model of postmenopausal breast cancer. Here, we investigated a potential role for AR in obesity-associated post-OVX mammary tumor progression following ovarian estrogen loss. In this model, we found that obese but not lean rats had nuclear localized AR in tumors that progressed 3 weeks after OVX, compared to those that regressed. AR nuclear localization is consistent with activation of AR-dependent transcription. Longer-term studies (8 weeks post-OVX) showed that AR nuclear localization and expression were maintained in tumors that had progressed, but AR expression was nearly lost in tumors that were regressing. The anti-androgen enzalutamide effectively blocked tumor progression in obese rats by promoting tumor necrosis and also prevented the formation of new tumors after OVX. Neither circulating nor mammary adipose tissue levels of the AR ligand testosterone were elevated in obese compared to lean rats; however, IL-6, which we previously reported to be higher in plasma from obese versus lean rats, sensitized breast cancer cells to low levels of testosterone. Our study demonstrates that, in the context of obesity, AR plays a role in driving ER-positive mammary tumor progression in an environment of low estrogen availability, and that circulating factors unique to the obese host, including IL-6, may influence how cancer cells respond to steroid hormones.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Obesity/etiology , Obesity/metabolism , Ovary/metabolism , Receptors, Androgen/metabolism , Adipose Tissue/metabolism , Animals , Antineoplastic Agents/pharmacology , Benzamides , Biomarkers , Breast Neoplasms/blood , Breast Neoplasms/pathology , Cell Line, Tumor , Chromatography, Liquid , Disease Models, Animal , Disease Progression , Female , Humans , Immunohistochemistry , Interleukin-6/metabolism , Interleukin-6/pharmacology , Mammary Neoplasms, Experimental , Mass Spectrometry , Nitriles , Obesity/blood , Ovariectomy , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Postmenopause , Rats , Steroids/blood , Steroids/metabolism , Testosterone/metabolism , Testosterone/pharmacology
18.
Physiol Rep ; 5(10): e13272, 2017 May.
Article in English | MEDLINE | ID: mdl-28533263

ABSTRACT

Both the history of obesity and weight loss may change how menopause affects metabolic health. The purpose was to determine whether obesity and/or weight loss status alters energy balance (EB) and subsequent weight gain after the loss of ovarian function. Female lean and obese Wistar rats were randomized to 15% weight loss (WL) or ad libitum fed controls (CON). After the weight loss period, WL rats were kept in EB at the reduced weight for 8 weeks prior to ovariectomy (OVX). After OVX, all rats were allowed to eat ad libitum until weight plateaued. Energy intake (EI), spontaneous physical activity, and total energy expenditure (TEE) were measured with indirect calorimetry before OVX, immediately after OVX, and after weight plateau. Changes in energy intake (EI), TEE, and weight gain immediately after OVX were similar between lean and obese rats. However, obese rats gained more total weight and fat mass than lean rats over the full regain period. Post-OVX, EI increased more (P ≤ 0.03) in WL rats (58.9 ± 3.5 kcal/d) than CON rats (8.5 ± 5.2 kcal/d), and EI partially normalized (change from preOVX: 20.5 ± 4.2 vs. 1.5 ± 4.9 kcal/day) by the end of the study. As a result, WL rats gained weight (week 1:44 ± 20 vs. 7 ± 25 g) more rapidly (mean = 44 ± 20 vs. 7 ± 25 g/week; P < 0.001) than CON Prior obesity did not affect changes in EB or weight regain following OVX, whereas a history of weight loss prior to OVX augmented disruptions in EB after OVX, resulting in more rapid weight regain.


Subject(s)
Obesity/metabolism , Ovary/metabolism , Weight Gain , Weight Loss , Animals , Body Weight , Energy Intake , Energy Metabolism , Female , Ovariectomy , Rats, Wistar
19.
Cancer Prev Res (Phila) ; 10(3): 198-207, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28154203

ABSTRACT

Several epidemiologic studies have associated metformin treatment with a reduction in breast cancer incidence in prediabetic and type II diabetic populations. Uncertainty exists regarding which patient populations and/or tumor subtypes will benefit from metformin treatment, and most preclinical in vivo studies have given little attention to the cellular pharmacology of intratumoral metformin uptake. Epidemiologic reports consistently link western-style high fat diets (HFD), which drive overweight and obesity, with increased risk of breast cancer. We used a rat model of HFD-induced overweight and mammary carcinogenesis to define intratumoral factors that confer metformin sensitivity. Mammary tumors were initiated with 1-methyl-1-nitrosourea, and rats were randomized into metformin-treated (2 mg/mL drinking water) or control groups (water only) for 8 weeks. Two-thirds of existing mammary tumors responded to metformin treatment with decreased tumor volumes (P < 0.05), reduced proliferative index (P < 0.01), and activated AMPK (P < 0.05). Highly responsive tumors accumulated 3-fold greater metformin amounts (P < 0.05) that were positively correlated with organic cation transporter-2 (OCT2) protein expression (r = 0.57; P = 0.038). Importantly, intratumoral metformin concentration negatively associated with tumor volume (P = 0.03), and each 10 pmol increase in intratumoral metformin predicted >0.11 cm3 reduction in tumor volume. Metformin treatment also decreased proinflammatory arachidonic acid >1.5-fold in responsive tumors (P = 0.023). Collectively, these preclinical data provide evidence for a direct effect of metformin in vivo and suggest that OCT2 expression may predict metformin uptake and tumor response. Cancer Prev Res; 10(3); 198-207. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Mammary Neoplasms, Experimental/pathology , Metformin/pharmacology , Organic Cation Transport Proteins/metabolism , Animals , Cell Proliferation/drug effects , Female , Hypoglycemic Agents/pharmacology , Organic Cation Transporter 2 , Rats , Rats, Wistar
20.
Med Sci Sports Exerc ; 49(5): 888-895, 2017 05.
Article in English | MEDLINE | ID: mdl-28079706

ABSTRACT

Using a nonsteroidal anti-inflammatory drug (NSAID) before a single bout of mechanical loading can reduce bone formation response. It is unknown whether this translates to an attenuation of bone strength and structural adaptations to exercise training. PURPOSE: This study aimed to determine whether nonsteroidal anti-inflammatory drug use before exercise prevents increases in bone structure and strength in response to weight-bearing exercise. METHODS: Adult female Wistar rats (n = 43) were randomized to ibuprofen (IBU) or vehicle (VEH) and exercise (EX) or sedentary (SED) groups in a 2 × 2 (drug and activity) ANCOVA design with body weight as the covariate, and data are reported as mean ± SE. IBU drops (30 mg·kg BW) or VEH (volume equivalent) were administered orally 1 h before the bout of exercise. Treadmill running occurred 5 d·wk for 60 min·d at 20 m·min with a 5° incline for 12 wk. Micro-CT, mechanical testing, and finite element modeling were used to quantify bone characteristics. RESULTS: Drug-activity interactions were not significant. Exercise increased tibia cortical cross-sectional area (EX = 5.67 ± 0.10, SED = 5.37 ± 0.10 mm, P < 0.01) and structural estimates of bone strength (Imax: EX = 5.16 ± 0.18, SED = 4.70 ± 0.18 mm, P < 0.01; SecModPolar: EX = 4.01 ± 0.11, SED = 3.74 ± 0.10 mm, P < 0.01). EX had increased failure load (EX = 243 ± 9, SED = 202 ± 7 N, P < 0.05) and decreased distortion in response to a 200-N load (von Mises stress at tibia-fibula junction: EX = 48.2 ± 1.3, SED = 51.7 ± 1.2 MPa, P = 0.01). There was no effect of ibuprofen on any measurement tested. Femur results revealed similar patterns. CONCLUSION: Ibuprofen before exercise did not prevent the skeletal benefits of exercise in female rats. However, exercise that engenders higher bone strains may be required to detect an effect of ibuprofen.


Subject(s)
Adaptation, Physiological/drug effects , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cortical Bone/drug effects , Ibuprofen/pharmacology , Osteogenesis/drug effects , Physical Conditioning, Animal/physiology , Animals , Cortical Bone/anatomy & histology , Cortical Bone/physiology , Female , Humans , Osteogenesis/physiology , Random Allocation , Rats, Wistar , Resistance Training
SELECTION OF CITATIONS
SEARCH DETAIL
...