Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Protein Chem Struct Biol ; 129: 215-245, 2022.
Article in English | MEDLINE | ID: mdl-35305720

ABSTRACT

The most common world-wide cause of antibiotic-associated infectious diarrhea and colitis is the toxin producing bacterium, Clostridioides difficile (C. difficile). Here we review the background and characteristics of the bacterium and the toxins produced together with the epidemiology and the complex pathogenesis that leads to a broad clinical spectrum of disease. The review describes the difficulties faced in obtaining a quick and accurate diagnosis despite the range of sensitive and specific diagnostic tools available. We also discuss the problem of disease recurrence and the importance of disease prevention. The high rates of infection recurrence mean that treatment strategies are constantly under review and we outline the diverse treatment options that are currently in use and explore the emerging treatment options of pulsed antibiotic use, microbial replacement therapies and the use of monoclonal antibodies. We summarize the future direction of treatment strategies which include the development of novel antibiotics, the administration of oral polyclonal antibody formulations, the use of vaccines, the administration of competitive non-toxigenic spores and the neutralization of antibiotics at the microbiota level. Future successful treatments will likely involve a combination of therapies to provide the most effective and robust approach to C. difficile management.


Subject(s)
Clostridioides difficile , Clostridium Infections , Anti-Bacterial Agents/therapeutic use , Clostridioides , Clostridium Infections/diagnosis , Clostridium Infections/drug therapy , Fecal Microbiota Transplantation , Humans
2.
Front Microbiol ; 11: 578903, 2020.
Article in English | MEDLINE | ID: mdl-33072047

ABSTRACT

Clostridioides difficile infection (CDI) is a toxin-mediated infection in the gut and a major burden on healthcare facilities worldwide. We rationalized that it would be beneficial to design an antibody therapy that is delivered to, and is active at the site of toxin production, rather than neutralizing the circulating and luminal toxins after significant damage of the layers of the intestines has occurred. Here we describe a highly potent therapeutic, OraCAb, with high antibody titers and a formulation that protects the antibodies from digestion/inactivation in the gastrointestinal tract. The potential of OraCAb to prevent CDI in an in vivo hamster model and an in vitro human colon model was assessed. In the hamster model we optimized the ratio of the antibodies against each of the toxins produced by C. difficile (Toxins A and B). The concentration of immunoglobulins that is effective in a hamster model of CDI was determined. A highly significant difference in animal survival for those given an optimized OraCAb formulation versus an untreated control group was observed. This is the first study testing the effect of oral antibodies for treatment of CDI in an in vitro gut model seeded with a human fecal inoculum. Treatment with OraCAb successfully neutralized toxin production and did not interfere with the colonic microbiota in this model. Also, treatment with a combination of vancomycin and OraCAb prevented simulated CDI recurrence, unlike vancomycin therapy alone. These data demonstrate the efficacy of OraCAb formulation for the treatment of CDI in pre-clinical models.

3.
Adv Protein Chem Struct Biol ; 120: 313-348, 2020.
Article in English | MEDLINE | ID: mdl-32085884

ABSTRACT

The rheumatological diseases are a group of chronic, painful, degenerative and debilitating conditions with an increasing prevalence across the globe. The pathogenesis of these disorders is complex, overlapping and not fully understood. As such, it is difficult and time consuming to achieve correct diagnosis and complete remission for an individual patient. In this review we describe the most common forms of inflammatory arthritis and discuss how the management and treatment options for these rheumatic diseases have developed over time. We outline the successes and the limitations of current treatment regimens and discuss the economic burden of the current options. With advancements in understanding of disease mechanisms, we discuss the importance of the biologics revolution in the context of rheumatological disease and how the development of biosimilars and small molecule inhibitors will impact current treatment options in order to alleviate some of the cost burden of biological therapies. The ideal treatment strategy for the future would involve personalized and predictive medicine where by treatments can be tailored to an individual patient's needs in order to achieve fast and successful remission with no adverse events.


Subject(s)
Antimalarials/therapeutic use , Rheumatic Diseases/therapy , Small Molecule Libraries/therapeutic use , Humans , Immunotherapy , Rheumatic Diseases/immunology
4.
Nat Commun ; 7: 10587, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26841837

ABSTRACT

In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a 'multi-hit' mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a 'split-washer' configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular ß-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration.


Subject(s)
Complement C5b/ultrastructure , Complement C6/ultrastructure , Complement C7/ultrastructure , Complement C8/ultrastructure , Complement C9/ultrastructure , Complement Membrane Attack Complex/ultrastructure , Multiprotein Complexes/ultrastructure , Chromatography, Liquid , Cryoelectron Microscopy , Fluorescent Dyes , Humans , Image Processing, Computer-Assisted , Mass Spectrometry , Microscopy, Electron , Models, Molecular , Molecular Structure , Protein Structure, Secondary
6.
J Immunol ; 194(7): 3029-34, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25725109

ABSTRACT

Complement is implicated in the pathogenesis of rheumatoid arthritis (RA); elevated levels of complement activation products have been measured in plasma, synovial fluid, and synovial tissues of patients. Complement polymorphisms are associated with RA in genome-wide association studies. Coding-region polymorphisms may directly impact protein activity; indeed, we have shown that complement polymorphisms affecting a single amino acid change cause subtle changes in individual component function that in combination have dramatic effects on complement activity and disease risk. In this study, we explore the functional consequences of a single nucleotide polymorphism (SNP) (rs17611) encoding a V802I polymorphism in C5 and propose a mechanism for its link to RA pathology. Plasma levels of C5, C5a, and terminal complement complex were measured in healthy and RA donors and correlated to rs17611 polymorphic status. Impact of the SNP on C5 functionality was assessed. Plasma C5a levels were significantly increased and C5 levels significantly lower with higher copy number of the RA risk allele for rs17611, suggesting increased turnover of C5 V802. Functional assays using purified C5 variants revealed no significant differences in lytic activity, suggesting that increased C5 V802 turnover was not mediated by complement convertase enzymes. C5 is also cleaved in vivo by proteases; the C5 V802 variant was more sensitive to cleavage with elastase and the "C5a" generated was biologically active. We hypothesize that this SNP in C5 alters the rate at which elastase generates active C5a in rheumatoid joints, hence recruiting neutrophils to the site thus maintaining a state of inflammation in arthritic joints.


Subject(s)
Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Complement C5/genetics , Polymorphism, Genetic , Alleles , Complement Activation/genetics , Complement Activation/immunology , Complement C5/immunology , Complement C5/metabolism , Complement Membrane Attack Complex/immunology , Complement System Proteins/genetics , Complement System Proteins/immunology , Cytotoxicity, Immunologic , Gene Frequency , Genetic Association Studies , Genotype , Humans , Hydrolysis , Leukocyte Elastase/metabolism , Polymorphism, Single Nucleotide
7.
Mol Immunol ; 64(1): 170-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25534848

ABSTRACT

Patients with genetically determined deficiency of complement component 5 are usually diagnosed because of recurrent invasive Neisseria meningitidis infections. Approximately 40 individual cases have been diagnosed worldwide. Nevertheless, reports of the responsible genetic defects have been sporadic, and we know of no previous reports of C5 deficiency being associated with a number of independent meningococcal disease cases in particular communities. Here we describe C5 deficiency in seven unrelated Western Cape, South African families. Three different C5 mutations c.55C>T:p.Q19X, c.754G>A:p.A252T and c.4426C>T:p.R1476X were diagnosed in index cases from two families who had both presented with recurrent meningococcal disease. p.Q19X and p.R1476X have already been described in North American Black families and more recently p.Q19X in a Saudi family. However, p.A252T was only reported in SNP databases and was not associated with disease until the present study was undertaken in the Western Cape, South Africa. We tested for p.A252T in 140 patients presenting with meningococcal disease in the Cape Town area, and found seven individuals in five families who were homozygous for the mutation p.A252T. Very low serum C5 protein levels (0.1-4%) and correspondingly low in vitro functional activity were found in all homozygous individuals. Allele frequencies of p.A252T in the Black African and Cape Coloured communities were 3% and 0.66% and estimated homozygosities are 1/1100 and 1/22,500 respectively. In 2012 we reported association between p.A252T and meningococcal disease. Molecular modelling of p.A252T has indicated an area of molecular stress in the C5 molecule which may provide a mechanism for the very low level in the circulation. This report includes seven affected families indicating that C5D is not rare in South Africa.


Subject(s)
Black People/genetics , Complement C5/genetics , Genetic Predisposition to Disease , Homozygote , Meningitis, Meningococcal/genetics , Meningitis, Meningococcal/immunology , Mutation/genetics , Adolescent , Adult , Complement Activation/immunology , Complement C5/chemistry , Complement C5/deficiency , Family , Female , Hereditary Complement Deficiency Diseases , Humans , Immunologic Deficiency Syndromes/genetics , Infant, Newborn , Male , Meningitis, Meningococcal/blood , Mutation Rate , Pedigree , South Africa , Young Adult
8.
Rheumatology (Oxford) ; 52(11): 1952-62, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23804219

ABSTRACT

OBJECTIVES: HLA-B*27:05 is associated with AS whereas HLA-B*27:09 is not associated. We hypothesized that different interactions with KIR immune receptors could contribute to the difference in disease association between HLA-B*27:05 and HLAB*27:09. Thus, the objective of this study was to compare the formation of ß2m-free heavy chain (FHC) including B27 dimers (B272) by HLA-B*27:05 and HLA-B*27:09 and their binding to KIR immunoreceptors. METHODS: We studied the formation of HLA-B*27:05 and HLA-B*27:09 heterotrimers and FHC forms including dimers in vitro and in transfected cells. We investigated HLA-B*27:05 and HLA-B*27:09 binding to KIR3DL1, KIR3DL2 and LILRB2 by FACS staining with class I tetramers and by quantifying interactions with KIR3DL2CD3ε-reporter cells and KIR3DL2-expressing NK cells. We also measured KIR expression on peripheral blood NK and CD4 T cells from 18 HLA-B*27:05 AS patients, 8 HLA-B27 negative and 12 HLA-B*27:05+ and HLA-B*27:09+ healthy controls by FACS staining. RESULTS: HLA-B*27:09 formed less B272 and FHC than HLA-B*27:05. HLA-B*27:05-expressing cells stimulated KIR3DL2CD3ε-reporter T cells more effectively. Cells expressing HLA-B*27:05 promoted KIR3DL2+ NK cell survival more strongly than HLA-B*27:09. HLA-B*27:05 and HLA-B*27:09 dimer tetramers stained KIR3DL1, KIR3DL2 and LILRB2 equivalently. Increased proportions of NK and CD4 T cells expressed KIR3DL2 in HLA-B*27:05+ AS patients compared with HLA-B*27:05+, HLA-B*27:09+ and HLA-B27- healthy controls. CONCLUSION: Differences in the formation of FHC ligands for KIR3DL2 by HLA-B*27:05 and HLA-B*27:09 could contribute to the differential association of these alleles with AS.


Subject(s)
HLA-B27 Antigen/metabolism , Immunoglobulin Heavy Chains/metabolism , Receptors, KIR3DL2/metabolism , Spondylitis, Ankylosing/genetics , Adult , Alleles , CD4-Positive T-Lymphocytes/immunology , Cell Survival/immunology , Cells, Cultured , Coculture Techniques , Female , Genetic Predisposition to Disease , HLA-B27 Antigen/genetics , Humans , Killer Cells, Natural/immunology , Ligands , Male , Middle Aged , Spondylitis, Ankylosing/immunology , Spondylitis, Ankylosing/metabolism , Transfection
9.
Arthritis Rheum ; 64(10): 3139-49, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22576154

ABSTRACT

OBJECTIVE: Spondylarthritides (SpA), including ankylosing spondylitis (AS), are common inflammatory rheumatic diseases that are strongly associated with positivity for the HLA class I allotype B27. HLA-B27 normally forms complexes with ß(2) -microglobulin (ß(2) m) and peptide to form heterotrimers. However, an unusual characteristic of HLA-B27 is its ability to form ß(2) m-free heavy chain homodimers (HLA-B27(2) ), which, unlike classic HLA-B27, bind to killer cell immunoglobulin-like receptor 3DL2 (KIR-3DL2). Binding of HLA-B27(2) to KIR-3DL2-positive CD4+ T and natural killer (NK) cells stimulates cell survival and modulates cytokine production. This study was undertaken to produce an antibody to HLA-B27(2) in order to confirm its expression in SpA and to inhibit its proinflammatory properties. METHODS: We generated monoclonal antibodies by screening a human phage display library positively against B27(2) and negatively against B27 heterotrimers. Specificity was tested by enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR) assay, and fluorescence-activated cell sorting (FACS) analysis of B27(2) -expressing cell lines and peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) from patients with SpA. Functional inhibition of KIR-3DL2-B27(2) interactions was tested using cell lines and PBMCs from patients with SpA. RESULTS: Monoclonal antibody HD6 specifically recognized recombinant HLA-B27(2) by ELISA and by SPR assay. HD6 bound to cell lines expressing B27(2) . FACS revealed binding of HD6 to PBMCs and SFMCs from patients with AS but not from controls. HD6 inhibited both the binding of HLA-B27(2) to KIR-3DL2 and the survival and proliferation of KIR-3DL2-positive NK cells. Finally, HD6 inhibited production of the proinflammatory disease-associated cytokine interleukin-17 by PBMCs from patients with AS. CONCLUSION: These results demonstrate that antibody HD6 has potential for use in both the investigation and the treatment of AS and other B27-associated spondylarthritides.


Subject(s)
HLA-B27 Antigen/immunology , Inflammation/immunology , Killer Cells, Natural/immunology , Spondylarthritis/immunology , T-Lymphocytes/immunology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Cell Line , HLA-B27 Antigen/metabolism , Humans , Inflammation/metabolism , Killer Cells, Natural/metabolism , Spondylarthritis/metabolism , T-Lymphocytes/metabolism
10.
J Immunol ; 188(12): 6184-93, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22593621

ABSTRACT

Possession of HLA-B27 (B27) strongly predisposes to the development of spondyloarthritis. B27 forms classical heterotrimeric complexes with ß(2)-microglobulin (ß2m) and peptide and (ß2m free) free H chain (FHC) forms including B27 dimers (termed B27(2)) at the cell surface. In this study, we characterize the interaction of HLA-B27 with LILR, leukocyte Ig-like receptor (LILR)B1 and LILRB2 immune receptors biophysically, biochemically, and by FACS staining. LILRB1 bound to B27 heterotrimers with a K(D) of 5.3 ± 1.5 µM but did not bind B27 FHC. LILRB2 bound to B27(2) and B27 FHC and B27 heterotrimers with K(D)s of 2.5, 2.6, and 22 ± 6 µM, respectively. Domain exchange experiments showed that B27(2) bound to the two membrane distal Ig-like domains of LILRB2. In FACS staining experiments, B27 dimer protein and tetramers stained LILRB2 transfectants five times more strongly than B27 heterotrimers. Moreover, LILRB2Fc bound to dimeric and other B27 FHC forms on B27-expressing cell lines more strongly than other HLA-class 1 FHCs. B27-transfected cells expressing B27 dimers and FHC inhibited IL-2 production by LILRB2-expressing reporter cells to a greater extent than control HLA class I transfectants. B27 heterotrimers complexed with the L6M variant of the GAG KK10 epitope bound with a similar affinity to complexes with the wild-type KK10 epitope (with K(D)s of 15.0 ± 0.8 and 16.0 ± 2.0 µM, respectively). Disulfide-dependent B27 H chain dimers and multimers are stronger ligands for LILRB2 than HLA class I heterotrimers and H chains. The stronger interaction of B27 dimers and FHC forms with LILRB2 compared with other HLA class I could play a role in spondyloarthritis pathogenesis.


Subject(s)
HLA-B27 Antigen/metabolism , Immunoglobulin Heavy Chains/metabolism , Membrane Glycoproteins/metabolism , Protein Multimerization , Receptors, Immunologic/metabolism , Antigen Presentation/immunology , Flow Cytometry , HLA Antigens/metabolism , HLA-B27 Antigen/chemistry , Humans , Jurkat Cells , Ligands , Lymphocyte Activation/immunology , Spondylarthritis/immunology , Spondylarthritis/metabolism , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...