Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Hum Genet ; 77(1): 56-66, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23278390

ABSTRACT

Using genetic data from an obesity candidate gene study of self-reported African Americans and European Americans, we investigated the number of Ancestry Informative Markers (AIMs) and candidate gene SNPs necessary to infer continental ancestry. Proportions of African and European ancestry were assessed with STRUCTURE (K = 2), using 276 AIMs. These reference values were compared to estimates derived using 120, 60, 30, and 15 SNP subsets randomly chosen from the 276 AIMs and from 1144 SNPs in 44 candidate genes. All subsets generated estimates of ancestry consistent with the reference estimates, with mean correlations greater than 0.99 for all subsets of AIMs, and mean correlations of 0.99 ± 0.003; 0.98 ± 0.01; 0.93 ± 0.03; and 0.81 ± 0.11 for subsets of 120, 60, 30, and 15 candidate gene SNPs, respectively. Among African Americans, the median absolute difference from reference African ancestry values ranged from 0.01 to 0.03 for the four AIMs subsets and from 0.03 to 0.09 for the four candidate gene SNP subsets. Furthermore, YRI/CEU Fst values provided a metric to predict the performance of candidate gene SNPs. Our results demonstrate that a small number of SNPs randomly selected from candidate genes can be used to estimate admixture proportions in African Americans reliably.


Subject(s)
Black or African American/genetics , Polymorphism, Single Nucleotide , White People/genetics , Female , Genetic Markers , Genotype , Humans , Male , Obesity/ethnology , Obesity/genetics
2.
Pac Symp Biocomput ; : 315-26, 2010.
Article in English | MEDLINE | ID: mdl-19908384

ABSTRACT

The methods to detect gene-gene interactions between variants in genome-wide association study (GWAS) datasets have not been well developed thus far. PLATO, the Platform for the Analysis, Translation and Organization of large-scale data, is a filter-based method bringing together many analytical methods simultaneously in an effort to solve this problem. PLATO filters a large, genomic dataset down to a subset of genetic variants, which may be useful for interaction analysis. As a precursor to the use of PLATO for the detection of gene-gene interactions, the implementation of a variety of single locus filters was completed and evaluated as a proof of concept. To streamline PLATO for efficient epistasis analysis, we determined which of 24 analytical filters produced redundant results. Using a kappa score to identify agreement between filters, we grouped the analytical filters into 4 filter classes; thus all further analyses employed four filters. We then tested the MAX statistic put forth by Sladek et al. (1) in simulated data exploring a number of genetic models of modest effect size. To find the MAX statistic, the four filters were run on each SNP in each dataset and the smallest p-value among the four results was taken as the final result. Permutation testing was performed to empirically determine the p-value. The power of the MAX statistic to detect each of the simulated effects was determined in addition to the Type 1 error and false positive rates. The results of this simulation study demonstrates that PLATO using the four filters incorporating the MAX statistic has higher power on average to find multiple types of effects and a lower false positive rate than any of the individual filters alone. In the future we will extend PLATO with the MAX statistic to interaction analyses for large-scale genomic datasets.


Subject(s)
Genome-Wide Association Study/statistics & numerical data , Computational Biology , Computer Simulation , Data Interpretation, Statistical , Databases, Genetic/statistics & numerical data , Epistasis, Genetic , Genetic Predisposition to Disease , Humans , Knowledge Bases , Models, Genetic , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...