Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Ther ; 34(1): 221-37, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22206795

ABSTRACT

BACKGROUND: Vandetanib is an orally available inhibitor of vascular endothelial growth factor receptor 2 and epidermal growth factor receptor and is rearranged during transfection tyrosine kinase activity. Development has included studies in non-small cell lung cancer and other tumor types. Accurate elimination kinetics were not determined in patient studies, and so the current human volunteer studies were performed to derive detailed kinetic data. OBJECTIVE: The aim of this study was to investigate pharmacokinetics, metabolism, excretion, and elimination kinetics after single oral doses of vandetanib in healthy subjects. METHODS: Three studies were conducted. In Study A (n = 23), cohorts of 8 subjects were randomized to receive double-blind, ascending doses of vandetanib (300-1200 mg) or placebo (6:2). Study B had a crossover design; subjects (n = 16) received vandetanib 300 mg under fed and fasted conditions. In Study C, subjects (n = 4) received [(14)C] vandetanib 800 mg. Blood samples were collected for pharmacokinetic analysis for up to 28 days after the dose (Studies A and B) and 42 days after the dose (Study C). Plasma (all studies) and urine (Study A only) samples were collected for determination of vandetanib concentrations. In Study C radioactivity was measured in plasma, blood, urine, and feces, and metabolites were identified chromatographically. Tolerability was evaluated by recording of adverse events, clinical chemistry, hematology and urinalysis parameters, vital signs, and ECGs (all studies). RESULTS: Study A: mean (SD) age 34.4 (6.9) years; 23/23 male; mean (SD; range) weight 80.6 (8.1; 62-97) kg. Study B: mean (SD) age 35.3 (8.4) years; 15/16 male; mean (SD; range) weight 80.7 (11.2; 57-100) kg. Study C: mean (SD) age 60.3 (7.4) years; 4/4 male; mean (SD; range) weight 78.0 (7.7l; 72-87) kg. Pharmacokinetic parameters were consistent across all studies (Studies A and C, vandetanib 800 mg: geometric mean CL/F, 13.1-13.3 L/h; geometric mean apparent volume of distribution at steady state [V(SS)/F], 3592-4103 L; mean t(½), 215.8-246.6 hours). Vandetanib was absorbed and eliminated slowly after single oral doses. AUC(0-∞) and C(max) were not significantly affected by ingestion of food. Median (range) T(max) was 8 (3-18) hours after food and 6 (5-18) hours after fasting. In plasma, concentrations of total radioactivity were higher than vandetanib concentrations at all time points, indicating the presence of circulating metabolites. Unchanged vandetanib and 2 anticipated metabolites (N-desmethylvandetanib and vandetanib N-oxide) were detected in plasma, urine, and feces. A further trace minor metabolite (glucuronide conjugate) was found in urine and feces. Approximately two thirds of the dose was recovered in feces (44%) and urine (25%) over 21 days, underlining the importance of both routes of elimination. Adverse events were reported by all subjects in Study A apart from 2 at a vandetanib dose of 300 mg; 12/15 (80%) and 14/16 (88%) subjects who took vandetanib under fed and fasted conditions, respectively, in Study B; and 2/4 (50%) subjects in Study C. No serious adverse events were reported. Increasing doses of vandetanib, in Study A, were associated with variable increases in systolic and diastolic blood pressures and variable increases from baseline in QTc interval. Hematuria was reported by 3 subjects (vandetanib 300 mg) in Study A. Small but consistent increases from baseline in serum creatinine were noted in subjects who received vandetanib in these studies. No other clinically important changes were observed in clinical chemistry, hematology and urinalysis parameters, vital signs, and ECGs in any of the studies. CONCLUSIONS: The pharmacokinetics of vandetanib after single oral doses to healthy subjects were defined and the metabolic pathway was proposed. Vandetanib was absorbed and eliminated slowly with a t(½) of ∼10 days after single oral doses. The extent of absorption was not significantly affected by the presence of food. Approximately two thirds of the dose was recovered in feces (44%) and urine (25%) over 21 days. Unchanged vandetanib and N-desmethyl and N-oxide metabolites were detected in plasma, urine, and feces. Vandetanib appeared to be was well tolerated in the populations studied.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Piperidines/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , Quinazolines/pharmacokinetics , Administration, Oral , Adult , Aged , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/blood , Antineoplastic Agents/urine , Area Under Curve , Biotransformation , Cross-Over Studies , Double-Blind Method , Feces/chemistry , Female , Food-Drug Interactions , Half-Life , Humans , Male , Metabolic Clearance Rate , Metabolomics , Middle Aged , Models, Biological , Piperidines/administration & dosage , Piperidines/adverse effects , Piperidines/blood , Piperidines/urine , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/urine , Quinazolines/administration & dosage , Quinazolines/adverse effects , Quinazolines/blood , Quinazolines/urine , United Kingdom , Young Adult
2.
Mol Cancer Ther ; 4(4): 641-9, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15827338

ABSTRACT

The relative distribution of gefitinib-related material in nude mice bearing s.c. human tumor xenografts and in an orthotopic rat lung tumor model was investigated following oral administration (50 mg/kg) of [14C]-gefitinib. Selected tissue samples were monitored for radioactivity by liquid scintillation counting, whereas plasma and tumor extracts were assayed for gefitinib and its major metabolites (M523595 and M537194) by high-performance liquid chromatography with tandem mass spectrometric detection. Tissue distribution was also determined by whole body autoradiography. Gefitinib was extensively distributed into the tissues of tumor-bearing mice and unchanged gefitinib was shown to account for most of the tumor radioactivity. Concentrations of gefitinib in mouse s.c. tumor xenografts were similar to skin concentrations and substantially greater (up to 12-fold based on area under the concentration-time curve) than plasma. Concentrations of gefitinib-related material in an orthotopic rat lung tumor were similar to those in healthy lung tissue and were much higher than corresponding blood levels. Following treatment of breast cancer patients with oral gefitinib (Iressa) 250 mg/d for > or = 14 days, gefitinib concentrations (mean, 7.5 microg/g, 16.7 micromol/L) in breast tumor tissue were 42 times higher than plasma, confirming the preferential distribution of gefitinib from blood into tumor tissue in the clinical situation. These gefitinib tumor concentrations are considerably higher than those reportedly required in vitro to achieve complete inhibition of epidermal growth factor receptor autophosphorylation in both epidermal growth factor receptor mutant (0.2 micromol/L) and wild-type cells (2 micromol/L).


Subject(s)
Antineoplastic Agents/pharmacology , ErbB Receptors/antagonists & inhibitors , Neoplasms/drug therapy , Quinazolines/pharmacokinetics , Animals , Breast Neoplasms/drug therapy , Cell Line, Tumor , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Female , Gefitinib , Humans , Lung Neoplasms/metabolism , Mice , Mice, Nude , Models, Chemical , Mutation , Neoplasm Transplantation , Quinazolines/pharmacology , Rats , Rats, Nude , Scintillation Counting , Signal Transduction , Time Factors , Tissue Distribution
3.
Clin Ther ; 25(11): 2822-35, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14693307

ABSTRACT

BACKGROUND: Rosuvastatin is a 3-hydroxy-3-methylglutaryl coenzyme A-reductase inhibitor, or statin, that has been developed for the treatment of dyslipidemia. OBJECTIVE: This study assessed the metabolism, excretion, and pharmacokinetics of a single oral dose of radiolabeled rosuvastatin ([14C]-rosuvastatin) in healthy volunteers. METHODS: This was a nonrandomized, open-label, single-day trial. Healthy adult male volunteers were given a single oral dose of [14C]-rosuvastatin 20 mg (20 mL [14C]-rosuvastatin solution, nominally containing 50 microCi radioactivity). Blood, urine, and fecal samples were collected up to 10 days after dosing. Tolerability assessments were made up to 10 days after dosing (trial completion) and at a follow-up visit within 14 days of trial completion. RESULTS: Six white male volunteers aged 36 to 52 years (mean, 43.7 years) participated in the trial. The geometric mean peak plasma concentration (C(max)) of rosuvastatin was 6.06 ng/mL and was reached at a median of 5 hours after dosing. At C(max), rosuvastatin accounted for approximately 50% of the circulating radioactive material. Approximately 90% of the rosuvastatin dose was recovered in feces, with the remainder recovered in urine. The majority of the dose (approximately 70%) was recovered within 72 hours after dosing; excretion was complete by 10 days after dosing. Metabolite profiles in feces indicated that rosuvastatin was excreted largely unchanged (76.8% of the dose). Two metabolites-rosuvastatin-5S-lactone and N-desmethyl rosuvastatin-were present in excreta. [14C]-rosuvastatin was well tolerated; 2 volunteers reported 4 mild adverse events that resolved without treatment. CONCLUSIONS: The majority of the rosuvastatin dose was excreted unchanged. Given the absolute bioavailability (20%) and estimated absorption (approximately 50%) of rosuvastatin, this finding suggests that metabolism is a minor route of clearance for this agent.


Subject(s)
Fluorobenzenes/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Pyrimidines/pharmacokinetics , Sulfonamides/pharmacokinetics , Adult , Area Under Curve , Biological Availability , Carbon Isotopes , Chromatography, High Pressure Liquid , Fluorobenzenes/blood , Fluorobenzenes/urine , Half-Life , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Hydroxymethylglutaryl-CoA Reductase Inhibitors/urine , Male , Metabolic Clearance Rate , Middle Aged , Pyrimidines/blood , Pyrimidines/urine , Rosuvastatin Calcium , Sulfonamides/blood , Sulfonamides/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...