Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Res Clin Pract ; 211: 111663, 2024 May.
Article in English | MEDLINE | ID: mdl-38616042

ABSTRACT

Obesity is associated with low-grade inflammation and insulin resistance (IR). The contribution of adipose tissue (AT) and hepatic inflammation to IR remains unclear. We conducted a study across three cohorts to investigate this relationship. The first cohort consists of six women with normal weight and twenty with obesity. In women with obesity, we found an upregulation of inflammatory markers in subcutaneous and visceral adipose tissue, isolated AT macrophages, and the liver, but no linear correlation with tissue-specific insulin sensitivity. In the second cohort, we studied 24 women with obesity in the upper vs lower insulin sensitivity quartile. We demonstrated that several omental and mesenteric AT inflammatory genes and T cell-related pathways are upregulated in IR, independent of BMI. The third cohort consists of 23 women and 18 men with obesity, studied before and one year after bariatric surgery. Weight loss following surgery was associated with downregulation of multiple immune pathways in subcutaneous AT and skeletal muscle, alongside notable metabolic improvements. Our results show that obesity is characterised by systemic and tissue-specific inflammation. Subjects with obesity and IR show a more pronounced inflammation phenotype, independent of BMI. Bariatric surgery-induced weight loss is associated with reduced inflammation and improved metabolic health.


Subject(s)
Inflammation , Insulin Resistance , Obesity , Humans , Insulin Resistance/physiology , Female , Inflammation/metabolism , Obesity/metabolism , Obesity/complications , Male , Adult , Middle Aged , Bariatric Surgery , Adipose Tissue/metabolism , Liver/metabolism , Cohort Studies , Weight Loss/physiology , Body Mass Index , Intra-Abdominal Fat/metabolism
2.
Clin Transl Gastroenterol ; 9(5): 155, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29799027

ABSTRACT

BACKGROUND: Gut microbiota-derived short-chain fatty acids (SCFAs) have been associated with beneficial metabolic effects. However, the direct effect of oral butyrate on metabolic parameters in humans has never been studied. In this first in men pilot study, we thus treated both lean and metabolic syndrome male subjects with oral sodium butyrate and investigated the effect on metabolism. METHODS: Healthy lean males (n = 9) and metabolic syndrome males (n = 10) were treated with oral 4 g of sodium butyrate daily for 4 weeks. Before and after treatment, insulin sensitivity was determined by a two-step hyperinsulinemic euglycemic clamp using [6,6-2H2]-glucose. Brown adipose tissue (BAT) uptake of glucose was visualized using 18F-FDG PET-CT. Fecal SCFA and bile acid concentrations as well as microbiota composition were determined before and after treatment. RESULTS: Oral butyrate had no effect on plasma and fecal butyrate levels after treatment, but did alter other SCFAs in both plasma and feces. Moreover, only in healthy lean subjects a significant improvement was observed in both peripheral (median Rd: from 71 to 82 µmol/kg min, p < 0.05) and hepatic insulin sensitivity (EGP suppression from 75 to 82% p < 0.05). Although BAT activity was significantly higher at baseline in lean (SUVmax: 12.4 ± 1.8) compared with metabolic syndrome subjects (SUVmax: 0.3 ± 0.8, p < 0.01), no significant effect following butyrate treatment on BAT was observed in either group (SUVmax lean to 13.3 ± 2.4 versus metabolic syndrome subjects to 1.2 ± 4.1). CONCLUSIONS: Oral butyrate treatment beneficially affects glucose metabolism in lean but not metabolic syndrome subjects, presumably due to an altered SCFA handling in insulin-resistant subjects. Although preliminary, these first in men findings argue against oral butyrate supplementation as treatment for glucose regulation in human subjects with type 2 diabetes mellitus.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Butyrates/administration & dosage , Glucose/metabolism , Insulin Resistance/physiology , Metabolic Syndrome/metabolism , Thinness/metabolism , Administration, Oral , Adult , Bile Acids and Salts/metabolism , Energy Metabolism , Fatty Acids, Volatile/blood , Fatty Acids, Volatile/metabolism , Feces/chemistry , Fluorodeoxyglucose F18 , Gastrointestinal Microbiome , Humans , Liver/metabolism , Male , Metabolic Syndrome/drug therapy , Pilot Projects , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Young Adult
3.
Int J Obes (Lond) ; 41(8): 1288-1294, 2017 08.
Article in English | MEDLINE | ID: mdl-28465607

ABSTRACT

BACKGROUND/OBJECTIVES: Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. SUBJECTS/METHODS: We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3-2H5]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m-2). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. RESULTS: Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area under the curve ⩾0.801, P<0.001). CONCLUSIONS: Adipose tissue insulin sensitivity (that is, the antilipolytic action of insulin) can be reliably quantified in overweight and obese humans by simplified index methods. The sensitivity and specificity of the Adipo-IR index and the fasting plasma insulin-glycerol product, combined with their simplicity and acceptable agreement, suggest that these may be most useful in clinical practice.


Subject(s)
Adipose Tissue/metabolism , Insulin Resistance , Metabolic Syndrome/metabolism , Obesity/metabolism , Overweight/metabolism , Adipose Tissue/drug effects , Adult , Body Mass Index , Female , Glucose Clamp Technique , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Lipolysis/drug effects , Male , Metabolic Syndrome/drug therapy , Metabolic Syndrome/physiopathology , Middle Aged , Obesity/complications , Obesity/physiopathology , Overweight/complications , Overweight/physiopathology , Reference Values
4.
Diabetes Metab ; 42(6): 416-423, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27262368

ABSTRACT

AIM: Vitamin D deficiency has been proposed to be involved in obesity-induced metabolic disease. However, data on the relationship between 25-hydroxycholecalciferol (25(OH)D) and insulin resistance have been inconsistent, and few studies have investigated the active vitamin D metabolite, 1,25-dihydroxycholecalciferol (1,25(OH)2D). This study aimed to determine the relationship between circulating levels of both 25(OH)D and 1,25(OH)2D and direct measures of glucose metabolism and insulin action in obese women. METHODS: Serum levels of 25(OH)D and 1,25(OH)2D, and glucose metabolism and tissue-specific insulin action, as assessed in the basal state and during a two-step euglycaemic-hyperinsulinaemic clamp study with [6,6-2H2]glucose infusion, were measured in 37 morbidly obese women (age: 43±10 years; body mass index: 44±6kg/m2). RESULTS: Sixteen subjects had circulating 25(OH)D levels<50nmol/L, consistent with vitamin D deficiency, and 21 had normal 25(OH)D levels. There were no differences in either baseline characteristics or parameters of glucose metabolism and insulin action between the groups. Serum 25(OH)D, but not 1,25(OH)2D, was negatively correlated with both body mass index (r=-0.42, P=0.01) and total body fat (r=-0.46, P<0.01). Neither 25(OH)D nor 1,25(OH)2D levels were related to any measured metabolic parameters, including fasting glucose, fasting insulin, basal endogenous glucose production, and hepatic, adipose-tissue and skeletal muscle insulin sensitivity. CONCLUSION: Obesity was associated with lower levels of circulating 25(OH)D, but not with the hormonally active metabolite 1,25(OH)2D. Neither 25(OH)D nor 1,25(OH)2D were related to glucose metabolism and tissue-specific insulin sensitivity in obese women, suggesting that vitamin D does not play a major role in obesity-related insulin resistance.


Subject(s)
Blood Glucose/metabolism , Calcifediol/metabolism , Calcitriol/metabolism , Obesity, Morbid/epidemiology , Obesity, Morbid/metabolism , Adult , Cohort Studies , Female , Glucose Clamp Technique , Humans , Middle Aged , Vitamin D Deficiency
5.
Int J Obes (Lond) ; 39(12): 1703-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26155920

ABSTRACT

BACKGROUND/OBJECTIVES: Insulin resistance is the major contributor to cardiometabolic complications of obesity. We aimed to (1) establish cutoff points for insulin resistance from euglycemic hyperinsulinemic clamps (EHCs), (2) identify insulin-resistant obese subjects and (3) predict insulin resistance from routinely measured variables. SUBJECTS/METHODS: We assembled data from non-obese (n=112) and obese (n=100) men who underwent two-step EHCs using [6,6-(2)H2]glucose as tracer (insulin infusion dose 20 and 60 mU m(-2) min(-1), respectively). Reference ranges for hepatic and peripheral insulin sensitivity were calculated from healthy non-obese men. Based on these reference values, obese men with preserved insulin sensitivity or insulin resistance were identified. RESULTS: Cutoff points for insulin-mediated suppression of endogenous glucose production (EGP) and insulin-stimulated glucose disappearance rate (Rd) were 46.5% and 37.3 µmol kg(-)(1) min(-)(1), respectively. Most obese men (78%) had EGP suppression within the reference range, whereas only 12% of obese men had Rd within the reference range. Obese men with Rd <37.3 µmol kg(-1) min(-1) did not differ from insulin-sensitive obese men in age, body mass index (BMI), body composition, fasting glucose or cholesterol, but did have higher fasting insulin (110±49 vs 63±29 pmol l(-1), P<0.001) and homeostasis model assessment of insulin resistance (HOMA-IR) (4.5±2.2 vs 2.7±1.4, P=0.004). Insulin-resistant obese men could be identified with good sensitivity (80%) and specificity (75%) from fasting insulin >74 pmol l(-1). CONCLUSIONS: Most obese men have hepatic insulin sensitivity within the range of non-obese controls, but below-normal peripheral insulin sensitivity, that is, insulin resistance. Fasting insulin (>74 pmol l(-1) with current insulin immunoassay) may be used for identification of insulin-resistant (or metabolically unhealthy) obese men in research and clinical settings.


Subject(s)
Adipose Tissue, White/metabolism , Blood Glucose/metabolism , Hypoglycemic Agents/blood , Insulin Resistance , Insulin/blood , Liver/metabolism , Adult , Body Mass Index , Fasting/metabolism , Glucose Clamp Technique , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Male , Middle Aged , Muscle, Skeletal/metabolism , Netherlands/epidemiology , Obesity , Predictive Value of Tests , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...