Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674151

ABSTRACT

In response to cellular metabolic and signaling cues, the mitochondrial network employs distinct sets of membrane-shaping factors to dynamically modulate organellar structures through a balance of fission and fusion. While these organellar dynamics mediate mitochondrial structure/function homeostasis, they also directly impact critical cell-wide signaling pathways such as apoptosis, autophagy, and the integrated stress response (ISR). Mitochondrial fission is driven by the recruitment of the cytosolic dynamin-related protein-1 (DRP1), while fusion is carried out by mitofusins 1 and 2 (in the outer membrane) and optic atrophy-1 (OPA1) in the inner membrane. This dynamic balance is highly sensitive to cellular stress; when the transmembrane potential across the inner membrane (Δψm) is lost, fusion-active OPA1 is cleaved by the overlapping activity with m-AAA protease-1 (OMA1 metalloprotease, disrupting mitochondrial fusion and leaving dynamin-related protein-1 (DRP1)-mediated fission unopposed, thus causing the collapse of the mitochondrial network to a fragmented state. OMA1 is a unique regulator of stress-sensitive homeostatic mitochondrial balance, acting as a key upstream sensor capable of priming the cell for apoptosis, autophagy, or ISR signaling cascades. Recent evidence indicates that higher-order macromolecular associations within the mitochondrial inner membrane allow these specialized domains to mediate crucial organellar functionalities.


Subject(s)
Homeostasis , Metalloendopeptidases , Mitochondria , Mitochondrial Dynamics , Mitochondrial Proteins , Stress, Physiological , Humans , Animals , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Metalloendopeptidases/metabolism , Signal Transduction , Autophagy , Dynamins/metabolism , Apoptosis , GTP Phosphohydrolases/metabolism
2.
FEBS Open Bio ; 13(11): 2108-2123, 2023 11.
Article in English | MEDLINE | ID: mdl-37584250

ABSTRACT

Basal-like breast cancer (BBC) and glioblastoma multiforme (GBM) are aggressive cancers associated with poor prognosis. BBC and GBM have stem cell-like gene expression signatures, which are in part driven by forkhead box O (FOXO) transcription factors. To gain further insight into the impact of FOXO1 in BBC, we treated BT549 cells with AS1842856 and performed RNA sequencing. AS1842856 binds to unphosphorylated FOXO1 and inhibits its ability to directly bind to DNA. Gene Set Enrichment Analysis indicated that a set of WNT pathway target genes, including lymphoid enhancer-binding factor 1 (LEF1) and transcription factor 7 (TCF7), were robustly induced after AS1842856 treatment. These same genes were also induced in GBM cell lines U87MG, LN18, LN229, A172, and DBTRG upon AS1842856 treatment. By contrast, follow-up RNA interference (RNAi) targeting of FOXO1 led to reduced LEF1 and TCF7 gene expression in BT549 and U87MG cells. In agreement with RNAi experiments, CRISPR Cas9-mediated FOXO1 disruption reduced the expression of canonical WNT genes LEF1 and TCF7 in U87MG cells. The loss of TCF7 gene expression in FOXO1 disruption mutants was restored by exogenous expression of the DNA-binding-deficient FOXO1-H215R. Therefore, FOXO1 induces TCF7 in a DNA-binding-independent manner, similar to other published FOXO1-activated genes such as TCF4 and hes family bHLH transcription factor 1. Our work demonstrates that FOXO1 promotes canonical WNT gene expression in examined BBC and GBM cells, similar to results found in Drosophila melanogaster, T-cell development, and murine acute myeloid leukemia models.


Subject(s)
Drosophila melanogaster , Glioblastoma , Animals , Mice , Cell Differentiation , DNA , Glioblastoma/genetics , Stem Cells , Humans
3.
Int J Biol Macromol ; 250: 126187, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37558036

ABSTRACT

This study investigates the feasibility of centrifugal spinning for producing fibrous membranes containing pullulan, chitosan, and danshen extract. The danshen extract is composed of 20 wt% salvianolic acid B (SA). Citric acid was added to the mixture as a crosslinking agent to promote its use in the aqueous medium. The influence of the danshen concentration (25 wt% and 33 wt%) on fiber morphology, thermal behavior, and the biochemical effect was analyzed. Developed fiber-based membranes consist of long, continuous, and uniform fibers with a sparse scattering of beads. Fiber diameter analysis shows values ranging from 384 ± 123 nm to 644 ± 141 nm depending on the concentration of danshen. The nanofibers show adequate aqueous stability after crosslinking. Thermal analysis results prove that SA is loaded into nanofibers without compromising their structural integrity. Cell-based results indicate that the developed nanofiber membranes promote cell growth and are not detrimental to fibroblast cells. Anticancer studies reveal a promising inhibition to the proliferation of HCT116 colon cancer cells. The developed systems show potential as innovative systems to be used as a bioactive chemotherapeutic drug that could be placed on the removed tumor site to prevent development of colon cancer microdeposits.

4.
Macromol Biosci ; 23(10): e2300098, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37270675

ABSTRACT

This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high-yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross-linking are investigated. The morphological and thermo-physical properties, as well as water absorption of the developed nanofiber-based mats are characterized using microscopical analysis, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.


Subject(s)
Colorectal Neoplasms , Matrines , Nanofibers , Humans , Nanofibers/chemistry , Polyvinyl Alcohol/pharmacology , Polyvinyl Alcohol/chemistry , Tissue Scaffolds/chemistry , Colorectal Neoplasms/drug therapy
5.
Biomater Adv ; 133: 112594, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35527150

ABSTRACT

Scaffolds based on polymeric fibers represent an engaging biomedical device due to their particular morphology and similarity with extracellular matrices. The biggest challenge to use fibrous materials in the biomedical field is related to their favorable platform for the adhesion of pathogenic microorganisms. Therefore, their optimum performance not only depends on their bioactive potential but also on their antimicrobial properties. The aim of this work was the design of antimicrobial (zinc oxide, ZnO) and bioactive (hydroxyapatite, Hap) fibrous materials using poly(D, L-lactic acid) (PDLLA) as the polymer fiber substrate. Fiber based composite scaffolds were developed using the Forcespinning® technique. For analysis purposes, the morphological, thermal, antimicrobial and biological properties of the fibrous hybrid system obtained at a concentration of 5 wt% of ZnO and 5 wt% of Hap were studied. The incorporation of the aforementioned nanoparticles (NPs) mixture in PDLLA led to an increase in viscosity and a pseudo-plastic tendency of the precursor solution, which caused an increase in fiber diameters and their dispersion of values. Small cavities and certain roughness were the main surface morphology observed on the fibers before and after NPs incorporation. The fiber thermal stability decreased due to the presence of the NPs. The antimicrobial properties of the hybrid fibrous scaffold presented a growth inhibition (GI) of 70 and 85% for E. coli and S. aureus strains, respectively. Concerning the osteoblast-cell compatibility, PDLLA and hybrid PDLLA scaffold showed low toxicity (cell viabilities above 80%), allowing cell growth inside its three-dimension structure and favorable cell morphology extended along the fibers. This behavior suggests a promising potential of this hybrid PDLLA scaffold for bone application.


Subject(s)
Tissue Engineering , Zinc Oxide , Durapatite/pharmacology , Escherichia coli , Lactic Acid/chemistry , Polymers/pharmacology , Staphylococcus aureus , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Zinc Oxide/pharmacology
6.
Mater Sci Eng C Mater Biol Appl ; 124: 112061, 2021 May.
Article in English | MEDLINE | ID: mdl-33947555

ABSTRACT

Natural, biocompatible, and biodegradable composite nanofibers made of Aloe vera extract, pullulan, chitosan, and citric acid were successfully produced via Forcespinning® technology. The addition of Aloe vera extract at different weight percent loadings was investigated. The morphology, thermal properties, physical properties, and water absorption of the nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The developed nanofiber membranes exhibited good water absorption capabilities, synergistic antibacterial activity against Escherichia coli, and promoted cell attachment and growth. Its porous and high surface area structure make it a potential candidate for wound dressing applications due to its ability to absorb excessive blood and exudates, as well as provide protection from infection while maintaining good thermal stability.


Subject(s)
Aloe , Chitosan , Nanofibers , Anti-Bacterial Agents/pharmacology , Bandages
7.
Front Cell Dev Biol ; 9: 626117, 2021.
Article in English | MEDLINE | ID: mdl-33842456

ABSTRACT

Mammalian mitochondria are emerging as a critical stress-responsive contributor to cellular life/death and developmental outcomes. Maintained as an organellar network distributed throughout the cell, mitochondria respond to cellular stimuli and stresses through highly sensitive structural dynamics, particularly in energetically demanding cell settings such as cardiac and muscle tissues. Fusion allows individual mitochondria to form an interconnected reticular network, while fission divides the network into a collection of vesicular organelles. Crucially, optic atrophy-1 (OPA1) directly links mitochondrial structure and bioenergetic function: when the transmembrane potential across the inner membrane (ΔΨm) is intact, long L-OPA1 isoforms carry out fusion of the mitochondrial inner membrane. When ΔΨm is lost, L-OPA1 is cleaved to short, fusion-inactive S-OPA1 isoforms by the stress-sensitive OMA1 metalloprotease, causing the mitochondrial network to collapse to a fragmented population of organelles. This proteolytic mechanism provides sensitive regulation of organellar structure/function but also engages directly with apoptotic factors as a major mechanism of mitochondrial participation in cellular stress response. Furthermore, emerging evidence suggests that this proteolytic mechanism may have critical importance for cell developmental programs, particularly in cardiac, neuronal, and stem cell settings. OMA1's role as a key mitochondrial stress-sensitive protease motivates exciting new questions regarding its mechanistic regulation and interactions, as well as its broader importance through involvement in apoptotic, stress response, and developmental pathways.

8.
Mitochondrion ; 57: 88-96, 2021 03.
Article in English | MEDLINE | ID: mdl-33383158

ABSTRACT

Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm): when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.


Subject(s)
GTP Phosphohydrolases/metabolism , Metalloendopeptidases/genetics , Mitochondria, Heart/metabolism , Myocytes, Cardiac/cytology , Tretinoin/pharmacology , Animals , Apoptosis , Cell Differentiation , Cell Line, Tumor , Humans , Membrane Potentials , Metalloendopeptidases/metabolism , Mice , Mitochondrial Membranes/metabolism , Myocytes, Cardiac/metabolism , Rats
9.
Methods Cell Biol ; 155: 383-400, 2020.
Article in English | MEDLINE | ID: mdl-32183969

ABSTRACT

The maternally inherited mitochondrial DNA (mtDNA) is a circular 16,569bp double stranded DNA that encodes 37 genes, 24 of which (2 rRNAs and 22 tRNAs) are necessary for transcription and translation of 13 polypeptides that are all subunits of respiratory chain. Pathogenic mutations in mtDNA cause respiratory chain dysfunction, and are the underlying defect in an ever-increasing number of mtDNA-related encephalomyopathies with distinct phenotypes. In this chapter, we present an overview of mtDNA mutations and describe the molecular techniques currently employed in our laboratory to detect two types of mtDNA mutations: single-large-scale rearrangements and point mutations.


Subject(s)
DNA Mutational Analysis/methods , DNA, Mitochondrial/genetics , Mutation/genetics , Gene Rearrangement , Genome, Mitochondrial , High-Throughput Nucleotide Sequencing , Humans , Point Mutation/genetics , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
10.
BMC Mol Biol ; 20(1): 20, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31412782

ABSTRACT

The original article [1] contains three erroneous mentions of usage of a restriction enzyme-BstZ17I-in the Methods section as displayed in the following sentences.

11.
Antioxidants (Basel) ; 7(10)2018 Sep 22.
Article in English | MEDLINE | ID: mdl-30249006

ABSTRACT

As a highly dynamic organellar network, mitochondria are maintained as an organellar network by delicately balancing fission and fusion pathways. This homeostatic balance of organellar dynamics is increasingly revealed to play an integral role in sensing cellular stress stimuli. Mitochondrial fission/fusion balance is highly sensitive to perturbations such as loss of bioenergetic function, oxidative stress, and other stimuli, with mechanistic contribution to subsequent cell-wide cascades including inflammation, autophagy, and apoptosis. The overlapping activity with m-AAA protease 1 (OMA1) metallopeptidase, a stress-sensitive modulator of mitochondrial fusion, and dynamin-related protein 1 (DRP1), a regulator of mitochondrial fission, are key factors that shape mitochondrial dynamics in response to various stimuli. As such, OMA1 and DRP1 are critical factors that mediate mitochondrial roles in cellular stress-response signaling. Here, we explore the current understanding and emerging questions in the role of mitochondrial dynamics in sensing cellular stress as a dynamic, responsive organellar network.

12.
Membranes (Basel) ; 8(3)2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29973524

ABSTRACT

Fine fibers of polyhydroxybutyrate (PHB), a biopolymer, were developed via a centrifugal spinning technique. The developed fibers have an average diameter of 1.8 µm. Texas sour orange juice (SOJ) was applied as a natural antibacterial agent and infiltrated within the fibrous membranes. The antibacterial activity against common Gram-positive and Gram-negative bacteria (Staphylococcus aureus and Escherichia coli, respectively) was evaluated as well as cell adhesion and viability. The PHB/SOJ scaffolds showed antibacterial activity of up to 152% and 71% against S. aureus and E. coli, respectively. The cell studies revealed a suitable environment for cell growth and cell attachment. The outcome of this study opens up new opportunities for fabrication of fibrous materials for biomedical applications having multifunctional properties while using natural agents.

13.
Redox Rep ; 23(1): 160-167, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29961397

ABSTRACT

OBJECTIVE: To explore the impact of oxidative insults on mitochondrial dynamics. In mammalian cells, oxidative insults activate stress response pathways including inflammation, cytokine secretion, and apoptosis. Intriguingly, mitochondria are emerging as a sensitive network that may function as an early indicator of subsequent cellular stress responses. Mitochondria form a dynamic network, balancing fusion, mediated by optic atrophy-1 (OPA1), and fission events, mediated by dynamin-related protein-1 (DRP1), to maintain homeostasis. METHODS: Here, we examine the impact of oxidative insults on mitochondrial dynamics in 143B osteosarcoma and H9c2 cardiomyoblast cell lines via confocal microscopy, flow cytometry, and protein-based analyses. RESULTS: When challenged with hydrogen peroxide (H2O2), a ROS donor, both cell lines display fragmentation of the mitochondrial network and loss of fusion-active OPA1 isoforms, indicating that OPA1-mediated mitochondrial fusion is disrupted by oxidative damage in mammalian cells. Consistent with this, cells lacking OMA1, a key protease responsible for cleavage of OPA1, are protected against OPA1 cleavage and mitochondrial fragmentation in response to H2O2 challenge. DISCUSSION: Taken together, these findings indicate that oxidative insults damage OPA1-mediated mitochondrial dynamics in mammalian cells via activation of OMA1, consistent with an emerging role for mitochondrial dynamics as an early indicator of cellular stress signaling.


Subject(s)
GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/metabolism , Apoptosis/drug effects , Blotting, Western , Cell Line , Cell Line, Tumor , Dynamins , Flow Cytometry , GTP Phosphohydrolases/genetics , Humans , Hydrogen Peroxide/pharmacology , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Mitochondrial Proteins/genetics , Oxidative Stress/drug effects , Reverse Transcriptase Polymerase Chain Reaction
14.
BMC Mol Biol ; 19(1): 3, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29540148

ABSTRACT

BACKGROUND: Clustered regularly interspaced short palindromic repeat (CRISPR) RNA-guided adaptive immune systems are found in prokaryotes to defend cells from foreign DNA. CRISPR Cas9 systems have been modified and employed as genome editing tools in wide ranging organisms. Here, we provide a detailed protocol to truncate genes in mammalian cells using CRISPR Cas9 editing. We describe custom donor vector construction using Gibson assembly with the commonly utilized pcDNA3 vector as the backbone. RESULTS: We describe a step-by-step method to truncate genes of interest in mammalian cell lines using custom-made donor vectors. Our method employs 2 guide RNAs, mutant Cas9D10A nickase (Cas9 = CRISPR associated sequence 9), and a custom-made donor vector for homologous recombination to precisely truncate a gene of interest with a selectable neomycin resistance cassette (NPTII: Neomycin Phosphotransferase II). We provide a detailed protocol on how to design and construct a custom donor vector using Gibson assembly (and the commonly utilized pcDNA3 vector as the backbone) allowing researchers to obtain specific gene modifications of interest (gene truncation, gene deletion, epitope tagging or knock-in mutation). Selection of mutants in mammalian cell lines with G418 (Geneticin) combined with several screening methods: western blot analysis, polymerase chain reaction, and Sanger sequencing resulted in streamlined mutant isolation. Proof of principle experiments were done in several mammalian cell lines. CONCLUSIONS: Here we describe a detailed protocol to employ CRISPR Cas9 genome editing to truncate genes of interest using the commonly employed expression vector pcDNA3 as the backbone for the donor vector. Providing a detailed protocol for custom donor vector design and construction will enable researchers to develop unique genome editing tools. To date, detailed protocols for CRISPR Cas9 custom donor vector construction are limited (Lee et al. in Sci Rep 5:8572, 2015; Ma et al. in Sci Rep 4:4489, 2014). Custom donor vectors are commercially available, but can be expensive. Our goal is to share this protocol to aid researchers in performing genetic investigations that require custom donor vectors for specialized applications (specific gene truncations, knock-in mutations, and epitope tagging applications).


Subject(s)
CRISPR-Cas Systems , Forkhead Box Protein O3/genetics , Gene Editing/methods , Plasmids/genetics , Cell Line , Deoxyribonuclease I/metabolism , Genetic Vectors , HEK293 Cells , Homologous Recombination , Humans , Male , Mutation , RNA, Guide, Kinetoplastida/metabolism
15.
Membranes (Basel) ; 7(3)2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28829367

ABSTRACT

Surgical meshes, in particular those used to repair hernias, have been in use since 1891. Since then, research in the area has expanded, given the vast number of post-surgery complications such as infection, fibrosis, adhesions, mesh rejection, and hernia recurrence. Researchers have focused on the analysis and implementation of a wide range of materials: meshes with different fiber size and porosity, a variety of manufacturing methods, and certainly a variety of surgical and implantation procedures. Currently, surface modification methods and development of nanofiber based systems are actively being explored as areas of opportunity to retain material strength and increase biocompatibility of available meshes. This review summarizes the history of surgical meshes and presents an overview of commercial surgical meshes, their properties, manufacturing methods, and observed biological response, as well as the requirements for an ideal surgical mesh and potential manufacturing methods.

16.
Front Biosci (Landmark Ed) ; 22(4): 710-721, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27814641

ABSTRACT

The small (16,569 base pair) human mitochondrial genome plays a significant role in cell metabolism and homeostasis. Mitochondrial DNA (mtDNA) contributes to the generation of complexes which are essential to oxidative phosphorylation (OXPHOS). As such, mtDNA is directly integrated into mitochondrial biogenesis and signaling and regulates mitochondrial metabolism in concert with nuclear-encoded mitochondrial factors. Mitochondria are a highly dynamic, pleiomorphic network that undergoes fission and fusion events. Within this network, mtDNAs are packaged into structures called nucleoids which are actively distributed in discrete foci within the network. This sensitive organelle is frequently disrupted by insults such as oxidants and inflammatory cytokines, and undergoes genomic damage with double- and single-strand breaks that impair its function. Collectively, mtDNA is emerging as a highly sensitive indicator of cellular stress, which is directly integrated into the mitochondrial network as a contributor of a wide range of critical signaling pathways.


Subject(s)
DNA, Mitochondrial/genetics , Genome, Mitochondrial , DNA Damage , DNA, Mitochondrial/metabolism , Energy Metabolism/genetics , Humans , Mitochondria/genetics , Mitochondria/metabolism , Organelle Biogenesis , Oxidative Phosphorylation
17.
Cell Mol Life Sci ; 74(7): 1347-1363, 2017 04.
Article in English | MEDLINE | ID: mdl-27858084

ABSTRACT

As an organellar network, mitochondria dynamically regulate their organization via opposing fusion and fission pathways to maintain bioenergetic homeostasis and contribute to key cellular pathways. This dynamic balance is directly linked to bioenergetic function: loss of transmembrane potential across the inner membrane (Δψ m) disrupts mitochondrial fission/fusion balance, causing fragmentation of the network. However, the level of Δψ m required for mitochondrial dynamic balance, as well as the relative contributions of fission and fusion pathways, have remained unclear. To explore this, mitochondrial morphology and Δψ m were examined via confocal imaging and tetramethyl rhodamine ester (TMRE) flow cytometry, respectively, in cultured 143B osteosarcoma cells. When normalized to the TMRE value of untreated 143B cells as 100%, both genetic (mtDNA-depleted ρ0) and pharmacological [carbonyl cyanide m-chlorophenyl hydrazone (CCCP)-treated] cell models below 34% TMRE fluorescence were unable to maintain mitochondrial interconnection, correlating with loss of fusion-active long OPA1 isoforms (L-OPA1). Mechanistically, this threshold is maintained by mechanistic coordination of DRP1-mediated fission and OPA1-mediated fusion: cells lacking either DRP1 or the OMA1 metalloprotease were insensitive to loss of Δψ m, instead maintaining an obligately fused morphology. Collectively, these findings demonstrate a mitochondrial 'tipping point' threshold mediated by the interaction of Δψ m with both DRP1 and OMA1; moreover, DRP1 appears to be required for effective OPA1 maintenance and processing, consistent with growing evidence for direct interaction of fission and fusion pathways. These results suggest that Δψ m below threshold coordinately activates both DRP1-mediated fission and OMA1 cleavage of OPA1, collapsing mitochondrial dynamic balance, with major implications for a range of signaling pathways and cellular life/death events.


Subject(s)
GTP Phosphohydrolases/metabolism , Metalloproteases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/physiology , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cell Line, Tumor , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Dynamins , GTP Phosphohydrolases/deficiency , GTP Phosphohydrolases/genetics , HCT116 Cells , Humans , Membrane Potentials/drug effects , Metalloproteases/deficiency , Metalloproteases/genetics , Mice, Knockout , Microscopy, Fluorescence , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Mitochondria/chemistry , Mitochondria/genetics , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Polymerase Chain Reaction
18.
Diabetes Metab Res Rev ; 32(7): 672-674, 2016 10.
Article in English | MEDLINE | ID: mdl-27253402

ABSTRACT

This commentary discusses damage and loss of mitochondrial DNA (mtDNA) in type 2 diabetes mellitus from both the clinical and experimental perspectives. Increasingly, an array of studies in experimental models and patients suggests that the cellular stresses of insulin resistance in type 2 diabetes damage mtDNA, leading to loss of mitochondrial genetic content. As such, mtDNA is emerging as both a valuable monitoring tool and translational preventive target for metabolic disease. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
DNA Damage , DNA, Mitochondrial/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Humans
19.
Front Biosci (Schol Ed) ; 7(1): 109-24, 2015 06 01.
Article in English | MEDLINE | ID: mdl-25961690

ABSTRACT

Human mitochondrial DNA (mtDNA) is a small maternally inherited DNA, typically present in hundreds of copies in a single human cell. Thus, despite its small size, the mitochondrial genome plays a crucial role in the metabolic homeostasis of the cell. Our understanding of mtDNA genotype-phenotype relationships is derived largely from studies of the classical mitochondrial neuromuscular diseases, in which mutations of mtDNA lead to compromised mitochondrial bioenergetic function, with devastating pathological consequences. Emerging research suggests that loss, rather than mutation, of mtDNA plays a major role across a range of prevalent human diseases, including diabetes mellitus, cardiovascular disease, and aging. Here, we examine the 'rules' of mitochondrial genetics and function, the clinical settings in which loss of mtDNA is an emerging pathogenic mechanism, and explore mtDNA damage and its consequences for the organellar network and cell at large. As extranuclear genetic material arrayed throughout the cell to support metabolism, mtDNA is increasingly implicated in a host of disease conditions, opening a range of exciting questions regarding mtDNA and its role in cellular homeostasis.


Subject(s)
Cardiovascular Diseases/genetics , DNA, Mitochondrial/genetics , Metabolic Diseases/genetics , Age Factors , Animals , Humans , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mutation , Neuromuscular Diseases/genetics
20.
Carbohydr Polym ; 115: 16-24, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25439862

ABSTRACT

This study presents the successful development of biocompatible tannic acid (TA)/chitosan (CS)/pullulan (PL) composite nanofibers (NFs) with synergistic antibacterial activity against the Gram-negative bacteria Escherichia coli. The NFs were developed utilizing the forcespinning(®) (FS) technique from CS-CA aqueous solutions to avoid the usage of toxic organic solvents. The ternary nanofibrous membranes were crosslinked to become water stable for potential applications as wound dressing. The morphology, structure, water solubility, water absorption capability and thermal properties of the NFs were characterized. The ternary composite membrane exhibits good water absorption ability with rapid uptake rate. This novel membrane favors fibroblast cell attachment and growth by providing a 3D environment which mimics the extracellular matrix (ECM) in skin and allows cells to move through the fibrous structure resulting in interlayer growth throughout the membrane, thus favoring potential for deep and intricate wound healing.


Subject(s)
Bandages , Biocompatible Materials/pharmacology , Chitosan/chemistry , Glucans/chemistry , Nanofibers/chemistry , Tannins/chemistry , Wound Healing/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Chitosan/pharmacology , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Glucans/pharmacology , Microbial Sensitivity Tests , Solutions , Structure-Activity Relationship , Tannins/pharmacology , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...