Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826430

ABSTRACT

Dystonia is the third most common movement disorder and an incapacitating co-morbidity in a variety of neurologic conditions. Dystonia can be caused by genetic, degenerative, idiopathic, and acquired etiologies, which are hypothesized to converge on a "dystonia network" consisting of the basal ganglia, thalamus, cerebellum, and cerebral cortex. In acquired dystonia, focal lesions to subcortical areas in the network - the basal ganglia, thalamus, and cerebellum - lead to a dystonia that can be difficult to manage with canonical treatments, including deep brain stimulation (DBS). While studies in animal models have begun to parse the contribution of individual nodes in the dystonia network, how acquired injury to the cerebellar outflow tracts instigates dystonia; and how network modulation interacts with symptom latency remain as unexplored questions. Here, we present an electrolytic lesioning paradigm that bilaterally targets the cerebellar outflow tracts. We found that lesioning these tracts, at the junction of the superior cerebellar peduncles and the medial and intermediate cerebellar nuclei, resulted in acute, severe dystonia. We observed that dystonia is reduced with one hour of DBS of the centrolateral thalamic nucleus, a first order node in the network downstream of the cerebellar nuclei. In contrast, one hour of stimulation at a second order node in the short latency, disynaptic projection from the cerebellar nuclei, the striatum, did not modulate the dystonia in the short-term. Our study introduces a robust paradigm for inducing acute, severe dystonia, and demonstrates that targeted modulation based on network principles powerfully rescues motor behavior. These data inspire the identification of therapeutic targets for difficult to manage acquired dystonia.

2.
Front Psychiatry ; 15: 1304300, 2024.
Article in English | MEDLINE | ID: mdl-38352654

ABSTRACT

Autism spectrum disorders represent a diverse etiological spectrum that converge on a syndrome characterized by discrepant deficits in developmental domains often highlighted by concerns in socialization, sensory integration, and autonomic functioning. Importantly, the incidence and prevalence of autism spectrum disorders have seen sharp increases since the syndrome was first described in the 1940s. The wide etiological spectrum and rising number of individuals being diagnosed with the condition lend urgency to capturing a more nuanced understanding of the pathogenic mechanisms underlying the autism spectrum disorders. The current review seeks to understand how the disruption of AMPA receptor (AMPAr)-mediated neurotransmission in the cerebro-cerebellar circuit, particularly in genetic autism related to SHANK3 or SYNGAP1 protein dysfunction function and autism associated with in utero exposure to the anti-seizure medications valproic acid and topiramate, may contribute to the disease presentation. Initially, a discussion contextualizing AMPAr signaling in the cerebro-cerebellar circuitry and microstructural circuit considerations is offered. Subsequently, a detailed review of the literature implicating mutations or deletions of SHANK3 and SYNGAP1 in disrupted AMPAr signaling reveals how bidirectional pathogenic modulation of this key circuit may contribute to autism. Finally, how pharmacological exposure may interact with this pathway, via increased risk of autism diagnosis with valproic acid and topiramate exposure and potential treatment of autism using AMPAr modulator perampanel, is discussed. Through the lens of the review, we will offer speculation on how neuromodulation may be used as a rational adjunct to therapy. Together, the present review seeks to synthesize the disparate considerations of circuit understanding, genetic etiology, and pharmacological modulation to understand the mechanistic interaction of this important and complex disorder.

3.
Dystonia ; 22023.
Article in English | MEDLINE | ID: mdl-38273865

ABSTRACT

Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad "dystonia network" encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the "geste antagoniste" or "sensory trick" to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.

4.
Dystonia ; 12022.
Article in English | MEDLINE | ID: mdl-36960404

ABSTRACT

Converging evidence from structural imaging studies in patients, the function of dystonia-causing genes, and the comorbidity of neuronal and behavioral defects all suggest that pediatric-onset dystonia is a neurodevelopmental disorder. However, to fully appreciate the contribution of altered development to dystonia, a mechanistic understanding of how networks become dysfunctional is required for early-onset dystonia. One current hurdle is that many dystonia animal models are ideally suited for studying adult phenotypes, as the neurodevelopmental features can be subtle or are complicated by broad developmental deficits. Furthermore, most assays that are used to measure dystonia are not suited for developing postnatal mice. Here, we characterize the early-onset dystonia in Ptf1a Cre ;Vglut2 fl/fl mice, which is caused by the absence of neurotransmission from inferior olive neurons onto cerebellar Purkinje cells. We investigate motor control with two paradigms that examine how altered neural function impacts key neurodevelopmental milestones seen in postnatal pups (postnatal day 7-11). We find that Ptf1a Cre ;Vglut2 fl/fl mice have poor performance on the negative geotaxis assay and the surface righting reflex. Interestingly, we also find that Ptf1a Cre ;Vglut2 fl/fl mice make fewer ultrasonic calls when socially isolated from their nests. Ultrasonic calls are often impaired in rodent models of autism spectrum disorders, a condition that can be comorbid with dystonia. Together, we show that these assays can serve as useful quantitative tools for investigating how neural dysfunction during development influences neonatal behaviors in a dystonia mouse model. Our data implicate a shared cerebellar circuit mechanism underlying dystonia-related motor signs and social impairments in mice.

5.
Dev Neurosci ; 43(3-4): 181-190, 2021.
Article in English | MEDLINE | ID: mdl-33823515

ABSTRACT

Autism spectrum disorders (ASD) comprise a group of heterogeneous neurodevelopmental conditions characterized by impaired social interactions and repetitive behaviors with symptom onset in early infancy. The genetic risks for ASD have long been appreciated: concordance of ASD diagnosis may be as high as 90% for monozygotic twins and 30% for dizygotic twins, and hundreds of mutations in single genes have been associated with ASD. Nevertheless, only 5-30% of ASD cases can be explained by a known genetic cause, suggesting that genetics is not the only factor at play. More recently, several studies reported that up to 40% of infants with cerebellar hemorrhages and lesions are diagnosed with ASD. These hemorrhages are overrepresented in severely premature infants, who are born during a period of highly dynamic cerebellar development that encompasses an approximately 5-fold size expansion, an increase in structural complexity, and remarkable rearrangements of local neural circuits. The incidence of ASD-causing cerebellar hemorrhages during this window supports the hypothesis that abnormal cerebellar development may be a primary risk factor for ASD. However, the links between developmental deficits in the cerebellum and the neurological dysfunctions underlying ASD are not completely understood. Here, we discuss key processes in cerebellar development, what happens to the cerebellar circuit when development is interrupted, and how impaired cerebellar function leads to social and cognitive impairments. We explore a central question: Is cerebellar development important for the generation of the social and cognitive brain or is the cerebellum part of the social and cognitive brain itself?


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/genetics , Brain , Cerebellum , Humans , Infant
6.
Front Cell Neurosci ; 13: 441, 2019.
Article in English | MEDLINE | ID: mdl-31636540

ABSTRACT

The cerebellum is well-established as a primary center for controlling sensorimotor functions. However, recent experiments have demonstrated additional roles for the cerebellum in higher-order cognitive functions such as language, emotion, reward, social behavior, and working memory. Based on the diversity of behaviors that it can influence, it is therefore not surprising that cerebellar dysfunction is linked to motor diseases such as ataxia, dystonia, tremor, and Parkinson's disease as well to non-motor disorders including autism spectrum disorders (ASD), schizophrenia, depression, and anxiety. Regardless of the condition, there is a growing consensus that developmental disturbances of the cerebellum may be a central culprit in triggering a number of distinct pathophysiological processes. Here, we consider how cerebellar malformations and neuronal circuit wiring impact brain function and behavior during development. We use the cerebellum as a model to discuss the expanding view that local integrated brain circuits function within the context of distributed global networks to communicate the computations that drive complex behavior. We highlight growing concerns that neurological and neuropsychiatric diseases with severe behavioral outcomes originate from developmental insults to the cerebellum.

7.
Science ; 320(5884): 1771-4, 2008 Jun 27.
Article in English | MEDLINE | ID: mdl-18583611

ABSTRACT

Early embryos of some metazoans polarize radially to facilitate critical patterning events such as gastrulation and asymmetric cell division; however, little is known about how radial polarity is established. Early embryos of Caenorhabditis elegans polarize radially when cell contacts restrict the polarity protein PAR-6 to contact-free cell surfaces, where PAR-6 regulates gastrulation movements. We have identified a Rho guanosine triphosphatase activating protein (RhoGAP), PAC-1, which mediates C. elegans radial polarity and gastrulation by excluding PAR-6 from contacted cell surfaces. We show that PAC-1 is recruited to cell contacts, and we suggest that PAC-1 controls radial polarity by restricting active CDC-42 to contact-free surfaces, where CDC-42 binds and recruits PAR-6. Thus, PAC-1 provides a dynamic molecular link between cell contacts and PAR proteins that polarizes embryos radially.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Cell Communication , Cell Membrane/metabolism , Cell Polarity , Embryo, Nonmammalian/cytology , GTPase-Activating Proteins/metabolism , Animals , Body Patterning , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Cytoplasm/metabolism , Embryo, Nonmammalian/metabolism , Embryonic Development , Gastrulation , Molecular Sequence Data , Protein Serine-Threonine Kinases , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , cdc42 GTP-Binding Protein/metabolism
8.
Genetics ; 172(2): 893-913, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16204220

ABSTRACT

Many genes that affect axon pathfinding and cell migration have been identified. Mechanisms by which these genes and the molecules they encode interact with one another in pathways and networks to control developmental events are unclear. Rac GTPases, the cytoskeletal signaling molecule Enabled, and NIK kinase have all been implicated in regulating axon pathfinding and cell migration. Here we present evidence that, in Caenorhabditis elegans, three Rac GTPases, CED-10, RAC-2, and MIG-2, define three redundant pathways that each control axon pathfinding, and that the NIK kinase MIG-15 acts in each Rac pathway. Furthermore, we show that the Enabled molecule UNC-34 defines a fourth partially redundant pathway that acts in parallel to Rac/MIG-15 signaling in axon pathfinding. Enabled and the three Racs also act redundantly to mediate AQR and PQR neuronal cell migration. The Racs and UNC-34 Ena might all control the formation of actin-based protrusive structures (lamellipodia and filopodia) that mediate growth cone outgrowth and cell migration. MIG-15 does not act with the three Racs in execution of cell migration. Rather, MIG-15 affects direction of PQR neuronal migration, similar to UNC-40 and DPY-19, which control initial Q cell polarity, and Wnt signaling, which acts later to control Q cell-directed migration. MIG-2 Rac, which acts with CED-10 Rac, RAC-2 Rac, and UNC-34 Ena in axon pathfinding and cell migration, also acts with MIG-15 in PQR directional migration.


Subject(s)
Axons/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cell Movement/physiology , Nerve Tissue Proteins/metabolism , Neurons/cytology , Protein Serine-Threonine Kinases/metabolism , rac GTP-Binding Proteins/metabolism , Alleles , Amino Acid Sequence , Animals , Axons/enzymology , Base Sequence , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Cell Movement/genetics , Molecular Sequence Data , Nerve Tissue Proteins/genetics , Neurons/enzymology , Neurons/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , rac GTP-Binding Proteins/genetics , NF-kappaB-Inducing Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...