Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Article in English | MEDLINE | ID: mdl-38718950

ABSTRACT

BACKGROUND: Cockroach allergy contributes to morbidity among urban children with asthma. Few trials address the effect of subcutaneous immunotherapy (SCIT) with cockroach allergen among these at-risk children. OBJECTIVES: We sought to determine whether nasal allergen challenge (NAC) responses to cockroach allergen would improve following 1 year of SCIT. METHODS: Urban children with asthma, who were cockroach-sensitized and reactive on NAC, participated in a year-long randomized double-blind placebo-controlled SCIT trial using German cockroach extract. The primary endpoint was the change in mean Total Nasal Symptom Score (TNSS) during NAC after 12 months of SCIT. Changes in nasal transcriptomic responses during NAC, skin prick test wheal size, serum allergen-specific antibody production, and T-cell responses to cockroach allergen were assessed. RESULTS: Changes in mean NAC TNSS did not differ between SCIT-assigned (n = 28) versus placebo-assigned (n = 29) participants (P = .63). Nasal transcriptomic responses correlated with TNSS, but a treatment effect was not observed. Cockroach serum-specific IgE decreased to a similar extent in both groups, while decreased cockroach skin prick test wheal size was greater among SCIT participants (P = .04). A 200-fold increase in cockroach serum-specific IgG4 was observed among subjects receiving SCIT (P < .001) but was unchanged in the placebo group. T-cell IL-4 responses following cockroach allergen stimulation decreased to a greater extent among SCIT versus placebo (P = .002), while no effect was observed for IL-10 or IFN-γ. CONCLUSIONS: A year of SCIT failed to alter NAC TNSS and nasal transcriptome responses to cockroach allergen challenge despite systemic effects on allergen-specific skin tests, induction of serum-specific IgG4 serum production and down-modulation of allergen-stimulated T-cell responses.

2.
J Leukoc Biol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814679

ABSTRACT

Neutrophils and eosinophils share common hematopoietic precursors and usually diverge into distinct lineages with unique markers before being released from their hematopoietic site, which is the bone marrow (BM). However, previous studies identified an immature Ly6g(+) Il-5Rα(+) neutrophil population in mouse BM, expressing both neutrophil and eosinophil markers suggesting hematopoietic flexibility. Moreover, others have reported neutrophil populations expressing eosinophil-specific cell surface markers in tissues and altered disease states, confusing the field regarding eosinophil origins, function, and classification. Despite these reports, it is still unclear whether hematopoietic flexibility exists in human granulocytes. To answer this, we utilized single-cell RNA sequencing (scRNA-seq) and CITE-seq to profile human BM and circulating neutrophils and eosinophils at different stages of differentiation and determine whether neutrophil plasticity plays role in asthmatic inflammation. We show that immature metamyelocyte neutrophils in humans expand during severe asthmatic inflammation and express both neutrophil and eosinophil markers. We also show an increase in tri-lobed eosinophils with mixed neutrophil and eosinophil markers in allergic asthma and that IL-5 promotes differentiation of immature blood neutrophils into tri-lobed eosinophilic phenotypes suggesting a mechanism of emergency granulopoiesis to promote myeloid inflammatory or remodeling response in patients with chronic asthma. By providing insights into unexpectedly flexible granulocyte biology and demonstrating emergency hematopoiesis in asthma, our results highlight the importance of granulocyte plasticity in eosinophil development and allergic diseases.

3.
Cells ; 13(6)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38534377

ABSTRACT

The chronic inflammatory component of asthma is propagated by granulocytes, including neutrophils and eosinophils, in the peripheral circulation and airway. Previous studies have suggested that these cells have an altered expression of adhesion-related molecules and a propensity for the release of granule contents that may contribute to tissue damage and enhance inflammatory complications in patients with status asthmaticus. The goal of this prospective cohort study at a tertiary care pediatric hospital with a large population of asthma patients was to assess the role of granulocyte-based inflammation in the development of asthma exacerbation. Subjects were enrolled from two patient populations: those with mild-to-moderate asthma exacerbations seen in the emergency department and those with severe asthma admitted to the intensive care unit (PICU). Clinical data were collected, and blood was drawn. Granulocytes were immediately purified, and the phenotype was assessed, including the expression of cell surface markers, elastase release, and cytokine production. Severe asthmatics admitted to the PICU displayed a significantly higher total neutrophil count when compared with healthy donors. Moreover, little to no eosinophils were found in granulocyte preparations from severe asthmatics. Circulating neutrophils from severe asthmatics admitted to the PICU displayed significantly increased elastase release ex vivo when compared with the PMN from healthy donors. These data suggest that the neutrophil-based activation and release of inflammatory products displayed by severe asthmatics may contribute to the propagation of asthma exacerbations.


Subject(s)
Asthma , Neutrophils , Humans , Child , Pancreatic Elastase , Prospective Studies , Eosinophils , Inflammation
4.
J Allergy Clin Immunol ; 153(3): 809-820, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37944567

ABSTRACT

BACKGROUND: Most genetic studies of asthma and allergy have focused on common variation in individuals primarily of European ancestry. Studying the role of rare variation in quantitative phenotypes and in asthma phenotypes in populations of diverse ancestries can provide additional, important insights into the development of these traits. OBJECTIVE: We sought to examine the contribution of rare variants to different asthma- or allergy-associated quantitative traits in children with diverse ancestries and explore their role in asthma phenotypes. METHODS: We examined whole-genome sequencing data from children participants in longitudinal studies of asthma (n = 1035; parent-identified as 67% Black and 25% Hispanic) to identify rare variants (minor allele frequency < 0.01). We assigned variants to genes and tested for associations using an omnibus variant-set test between each of 24,902 genes and 8 asthma-associated quantitative traits. On combining our results with external data on predicted gene expression in humans and mouse knockout studies, we identified 3 candidate genes. A burden of rare variants in each gene and in a combined 3-gene score was tested for its associations with clinical phenotypes of asthma. Finally, published single-cell gene expression data in lower airway mucosal cells after allergen challenge were used to assess transcriptional responses to allergen. RESULTS: Rare variants in USF1 were significantly associated with blood neutrophil count (P = 2.18 × 10-7); rare variants in TNFRSF21 with total IgE (P = 6.47 × 10-6) and PIK3R6 with eosinophil count (P = 4.10 × 10-5) reached suggestive significance. These 3 findings were supported by independent data from human and mouse studies. A burden of rare variants in TNFRSF21 and in a 3-gene score was associated with allergy-related phenotypes in cohorts of children with mild and severe asthma. Furthermore, TNFRSF21 was significantly upregulated in bronchial basal epithelial cells from adults with allergic asthma but not in adults with allergies (but not asthma) after allergen challenge. CONCLUSIONS: We report novel associations between rare variants in genes and allergic and inflammatory phenotypes in children with diverse ancestries, highlighting TNFRSF21 as contributing to the development of allergic asthma.


Subject(s)
Asthma , Hypersensitivity , Adult , Child , Humans , Animals , Mice , Asthma/genetics , Hypersensitivity/genetics , Genetic Association Studies , Phenotype , Allergens , Polymorphism, Single Nucleotide , Genome-Wide Association Study , Receptors, Tumor Necrosis Factor
5.
Lancet Planet Health ; 7(1): e33-e44, 2023 01.
Article in English | MEDLINE | ID: mdl-36608946

ABSTRACT

BACKGROUND: Asthma prevalence and severity have markedly increased with urbanisation, and children in low-income urban centres have among the greatest asthma morbidity. Outdoor air pollution has been associated with adverse respiratory effects in children with asthma. However, the mechanisms by which air pollution exposure exacerbates asthma, and how these mechanisms compare with exacerbations induced by respiratory viruses, are poorly understood. We aimed to investigate the associations between regional air pollutant concentrations, respiratory illnesses, lung function, and upper airway transcriptional signatures in children with asthma, with particular focus on asthma exacerbations occurring in the absence of respiratory virus. METHODS: We performed a retrospective analysis of data from the MUPPITS1 cohort and validated our findings in the ICATA cohort. The MUPPITS1 cohort recruited 208 children aged 6-17 years living in urban areas across nine US cities with exacerbation-prone asthma between Oct 7, 2015, and Oct 18, 2016, and monitored them during reported respiratory illnesses. The last MUPPITS1 study visit occurred on Jan 6, 2017. The ICATA cohort recruited 419 participants aged 6-20 years with persistent allergic asthma living in urban sites across eight US cities between Oct 23, 2006, and March 25, 2008, and the last study visit occurred on Dec 30, 2009. We included participants from the MUPPITS1 cohort who reported a respiratory illness at some point during the follow-up and participants from the ICATA cohort who had nasal samples collected during respiratory illness or at a scheduled visit. We used air quality index values and air pollutant concentrations for PM2·5, PM10, O3, NO2, SO2, CO, and Pb from the US Environmental Protection Agency spanning the years of both cohorts, and matched values and concentrations to each illness for each participant. We investigated the associations between regional air pollutant concentrations and respiratory illnesses and asthma exacerbations, pulmonary function, and upper airway transcriptional signatures by use of a combination of generalised additive models, case crossover analyses, and generalised linear mixed-effects models. FINDINGS: Of the 208 participants from the MUPPITS1 cohort and 419 participants from the ICATA cohort, 168 participants in the MUPPITS1 cohort (98 male participants and 70 female participants) and 189 participants in the ICATA cohort (115 male participants and 74 female participants) were included in our analysis. We identified that increased air quality index values, driven predominantly by increased PM2·5 and O3 concentrations, were significantly associated with asthma exacerbations and decreases in pulmonary function that occurred in the absence of a provoking viral infection. Moreover, individual pollutants were significantly associated with altered gene expression in coordinated inflammatory pathways, including PM2·5 with increased epithelial induction of tissue kallikreins, mucus hypersecretion, and barrier functions and O3 with increased type-2 inflammation. INTERPRETATION: Our findings suggest that air pollution is an important independent risk factor for asthma exacerbations in children living in urban areas and is potentially linked to exacerbations through specific inflammatory pathways in the airway. Further investigation of these potential mechanistic pathways could inform asthma prevention and management approaches. FUNDING: National Institutes of Health, National Institute of Allergy and Infectious Diseases.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Humans , Male , Child , Female , Adolescent , United States/epidemiology , Air Pollutants/analysis , Retrospective Studies , Air Pollution/adverse effects , Air Pollution/analysis , Asthma/epidemiology , Particulate Matter/analysis
6.
PLoS Genet ; 19(1): e1010594, 2023 01.
Article in English | MEDLINE | ID: mdl-36638096

ABSTRACT

Impaired lung function in early life is associated with the subsequent development of chronic respiratory disease. Most genetic associations with lung function have been identified in adults of European descent and therefore may not represent those most relevant to pediatric populations and populations of different ancestries. In this study, we performed genome-wide association analyses of lung function in a multiethnic cohort of children (n = 1,035) living in low-income urban neighborhoods. We identified one novel locus at the TDRD9 gene in chromosome 14q32.33 associated with percent predicted forced expiratory volume in one second (FEV1) (p = 2.4x10-9; ßz = -0.31, 95% CI = -0.41- -0.21). Mendelian randomization and mediation analyses revealed that this genetic effect on FEV1 was partially mediated by DNA methylation levels at this locus in airway epithelial cells, which were also associated with environmental tobacco smoke exposure (p = 0.015). Promoter-enhancer interactions in airway epithelial cells revealed chromatin interaction loops between FEV1-associated variants in TDRD9 and the promoter region of the PPP1R13B gene, a stimulator of p53-mediated apoptosis. Expression of PPP1R13B in airway epithelial cells was significantly associated the FEV1 risk alleles (p = 1.3x10-5; ß = 0.12, 95% CI = 0.06-0.17). These combined results highlight a potential novel mechanism for reduced lung function in urban youth resulting from both genetics and smoking exposure.


Subject(s)
Genome-Wide Association Study , Lung , Adult , Adolescent , Humans , Child , Lung/metabolism , DNA Methylation/genetics , Multiomics , Forced Expiratory Volume/genetics , Genotype , Smoking
7.
Genome Med ; 14(1): 112, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175932

ABSTRACT

BACKGROUND: Asthma is the most common chronic disease in children, occurring at higher frequencies and with more severe disease in children with African ancestry. METHODS: We tested for association with haplotypes at the most replicated and significant childhood-onset asthma locus at 17q12-q21 and asthma in European American and African American children. Following this, we used whole-genome sequencing data from 1060 African American and 100 European American individuals to identify novel variants on a high-risk African American-specific haplotype. We characterized these variants in silico using gene expression and ATAC-seq data from airway epithelial cells, functional annotations from ENCODE, and promoter capture (pc)Hi-C maps in airway epithelial cells. Candidate causal variants were then assessed for correlation with asthma-associated phenotypes in African American children and adults. RESULTS: Our studies revealed nine novel African-specific common variants, enriched on a high-risk asthma haplotype, which regulated the expression of GSDMA in airway epithelial cells and were associated with features of severe asthma. Using ENCODE annotations, ATAC-seq, and pcHi-C, we narrowed the associations to two candidate causal variants that are associated with features of T2 low severe asthma. CONCLUSIONS: Previously unknown genetic variation at the 17q12-21 childhood-onset asthma locus contributes to asthma severity in individuals with African ancestries. We suggest that many other population-specific variants that have not been discovered in GWAS contribute to the genetic risk for asthma and other common diseases.


Subject(s)
Asthma , Black or African American , Black or African American/genetics , Alleles , Asthma/genetics , Asthma/metabolism , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Pore Forming Cytotoxic Proteins
8.
Lancet ; 400(10351): 502-511, 2022 08 13.
Article in English | MEDLINE | ID: mdl-35964610

ABSTRACT

BACKGROUND: Black and Hispanic children living in urban environments in the USA have an excess burden of morbidity and mortality from asthma. Therapies directed at the eosinophilic phenotype reduce asthma exacerbations in adults, but few data are available in children and diverse populations. Furthermore, the molecular mechanisms that underlie exacerbations either being prevented by, or persisting despite, immune-based therapies are not well understood. We aimed to determine whether mepolizumab, added to guidelines-based care, reduced the number of asthma exacerbations during a 52-week period compared with guidelines-based care alone. METHODS: This is a randomised, double-blind, placebo-controlled, parallel-group trial done at nine urban medical centres in the USA. Children and adolescents aged 6-17 years, who lived in socioeconomically disadvantaged neighbourhoods and had exacerbation-prone asthma (defined as ≥two exacerbations in the previous year) and blood eosinophils of at least 150 cells per µL were randomly assigned 1:1 to mepolizumab (6-11 years: 40 mg; 12-17 years: 100 mg) or placebo injections once every 4 weeks, plus guideline-based care, for 52 weeks. Randomisation was done using a validated automated system. Participants, investigators, and the research staff who collected outcome measures remained masked to group assignments. The primary outcome was the number of asthma exacerbations that were treated with systemic corticosteroids during 52 weeks in the intention-to-treat population. The mechanisms of treatment response were assessed by study investigators using nasal transcriptomic modular analysis. Safety was assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT03292588. FINDINGS: Between Nov 1, 2017, and Mar 12, 2020, we recruited 585 children and adolescents. We screened 390 individuals, of whom 335 met the inclusion criteria and were enrolled. 290 met the randomisation criteria, were randomly assigned to mepolizumab (n=146) or placebo (n=144), and were included in the intention-to-treat analysis. 248 completed the study. The mean number of asthma exacerbations within the 52-week study period was 0·96 (95% CI 0·78-1·17) with mepolizumab and 1·30 (1·08-1·57) with placebo (rate ratio 0·73; 0·56-0·96; p=0·027). Treatment-emergent adverse events occurred in 42 (29%) of 146 participants in the mepolizumab group versus 16 (11%) of 144 participants in the placebo group. No deaths were attributed to mepolizumab. INTERPRETATION: Phenotype-directed therapy with mepolizumab in urban children with exacerbation-prone eosinophilic asthma reduced the number of exacerbations. FUNDING: US National Institute of Allergy and Infectious Diseases and GlaxoSmithKline.


Subject(s)
Asthma , Pulmonary Eosinophilia , Antibodies, Monoclonal, Humanized , Asthma/drug therapy , Humans , United States , Urban Population
9.
J Allergy Clin Immunol ; 150(3): 666-675, 2022 09.
Article in English | MEDLINE | ID: mdl-35413355

ABSTRACT

BACKGROUND: Virus-induced IFN-α secretion by plasmacytoid dendritic cells (pDCs) is negatively impacted by IgE and has been linked to asthma exacerbations. Eosinophils, another contributor to type 2 inflammation, are also associated with asthma severity. OBJECTIVE: We sought to investigate the impact of eosinophils on pDC antiviral interferon responses and determine whether anti-IL-5/5Rα therapy enhances pDC antiviral function. METHODS: Blood pDCs purified from anonymous donors were stimulated in vitro with rhinovirus (RV)-16 in the presence or absence of eosinophils/eosinophil supernatants. IFN-α was measured in supernatants and RNA collected for bulk RNA-sequencing. Next, purified pDCs from 8 individuals with moderate to severe asthma, treated or not treated with anti-IL-5/5Rα therapy, were cultured ex vivo with or without RV; IFN-α secretion and differential gene expression analysis were compared between groups. RESULTS: Exposure to either eosinophils or eosinophil supernatants inhibited RV-induced pDC IFN-α secretion in a dose-dependent manner and did not impact pDC viability. Eosinophil-derived neurotoxin and TGF-ß partially recapitulated pDC IFN-α inhibition. Transcriptome analysis revealed global repression of pDC interferon response patterns by eosinophils, most notably in basal expression of interferon-stimulated genes. Increased RV-induced IFN-α secretion and transcription as well as increased basal interferon-stimulated gene expression was detected in pDCs from participants treated with anti-IL-5/5Rα therapy. CONCLUSIONS: Our findings highlight a novel mechanism through which type 2 inflammation regulates pDC IFN-α responses relevant to RV respiratory infections in the context of eosinophilic airway disease, suggesting a potential mechanism through which eosinophil-depleting therapies may reduce severity of RV illnesses.


Subject(s)
Asthma , Eosinophils , Antiviral Agents/metabolism , Asthma/drug therapy , Asthma/metabolism , Dendritic Cells/metabolism , Eosinophils/metabolism , Humans , Inflammation/metabolism , Interferon-alpha/metabolism , Interleukin-5/immunology , RNA/metabolism , Rhinovirus/metabolism
10.
J Allergy Clin Immunol ; 150(1): 204-213, 2022 07.
Article in English | MEDLINE | ID: mdl-35149044

ABSTRACT

BACKGROUND: Seasonal variation in respiratory illnesses and exacerbations in pediatric populations with asthma is well described, though whether upper airway microbes play season-specific roles in these events is unknown. OBJECTIVE: We hypothesized that nasal microbiota composition is seasonally dynamic and that discrete microbe-host interactions modify risk of asthma exacerbation in a season-specific manner. METHODS: Repeated nasal samples from children with exacerbation-prone asthma collected during periods of respiratory health (baseline; n = 181 samples) or first captured respiratory illness (n = 97) across all seasons, underwent bacterial (16S ribosomal RNA gene) and fungal (internal transcribed spacer region 2) biomarker sequencing. Virus detection was performed by multiplex PCR. Paired nasal transcriptome data were examined for seasonal dynamics and integrative analyses. RESULTS: Upper airway bacterial and fungal microbiota and rhinovirus detection exhibited significant seasonal dynamics. In seasonally adjusted analysis, variation in both baseline and respiratory illness microbiota related to subsequent exacerbation. Specifically, in the fall, when respiratory illness and exacerbation events were most frequent, several Moraxella and Haemophilus members were enriched both in virus-positive respiratory illnesses and those that progressed to exacerbations. The abundance of 2 discrete bacterial networks, characteristically comprising either Streptococcus or Staphylococcus, exhibited opposing interactions with an exacerbation-associated SMAD3 nasal epithelial transcriptional module to significantly increase the odds of subsequent exacerbation (odds ratio = 14.7, 95% confidence interval = 1.50-144, P = .02; odds ratio = 39.17, 95% confidence interval = 2.44-626, P = .008, respectively). CONCLUSIONS: Upper airway microbiomes covary with season and with seasonal trends in respiratory illnesses and asthma exacerbations. Seasonally adjusted analyses reveal specific bacteria-host interactions that significantly increase risk of asthma exacerbation in these children.


Subject(s)
Asthma , Microbiota , Virus Diseases , Asthma/microbiology , Bacteria/genetics , Child , Humans , Rhinovirus , Seasons , Transcriptome
11.
Med Mycol Case Rep ; 35: 18-21, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35036296

ABSTRACT

Here we report a case of a 14-week-old girl with a history of intrauterine drug exposure and hypoxic ischemic encephalopathy secondary to cardiac arrest requiring prolonged resuscitation at birth presented with irritability and a bulging anterior fontanelle. After neurosurgical resection, pathologic examination showed fungal hyphae, and Epicoccum nigrum was detected by fungal PCR and sequencing. To our knowledge, this is the first reported case of a central nervous system infection due to Epicoccum nigrum.

12.
J Allergy Clin Immunol ; 149(4): 1481-1485, 2022 04.
Article in English | MEDLINE | ID: mdl-34606833

ABSTRACT

BACKGROUND: Mold sensitization and exposure are associated with asthma severity, but the specific species that contribute to difficult-to-control (DTC) asthma are unknown. OBJECTIVE: We sought to determine the association between overall and specific mold levels in the homes of urban children and DTC asthma. METHODS: The Asthma Phenotypes in the Inner-City study recruited participants, aged 6 to 17 years, from 8 US cities and classified each participant as having either DTC asthma or easy-to-control (ETC) asthma on the basis of treatment step level. Dust samples had been collected in each participant's home (n = 485), and any dust remaining (n = 265 samples), after other analyses, was frozen at -20oC. The dust samples (n = 265) were analyzed using quantitative PCR to determine the concentrations of the 36 molds in the Environmental Relative Moldiness Index. Logistic regression was performed to discriminate specific mold content of dust from homes of children with DTC versus ETC asthma. RESULTS: Frozen-dust samples were available from 54% of homes of children with DTC (139 of 253) and ETC asthma (126 of 232). Only the average concentration of the mold Mucor was significantly (P < .001) greater in homes of children with DTC asthma. In homes with window air-conditioning units, the Mucor concentration contributed about a 22% increase (1.6 odds ratio; 95% CI, 1.2-2.2) in the ability to discriminate between cases of DTC and ETC asthma. CONCLUSIONS: Mucor levels in the homes of urban youth were a predictor of DTC asthma, and these higher Mucor levels were more likely in homes with a window air-conditioner.


Subject(s)
Air Pollution, Indoor , Asthma , Adolescent , Air Pollution, Indoor/analysis , Allergens , Asthma/epidemiology , Dust/analysis , Fungi , Housing , Humans , Urban Population
13.
J Allergy Clin Immunol ; 148(6): 1505-1514, 2021 12.
Article in English | MEDLINE | ID: mdl-34019912

ABSTRACT

BACKGROUND: Mucus plugging can worsen asthma control, lead to reduced lung function and fatal exacerbations. MUC5AC is the secretory mucin implicated in mucus plugging, and MUC5AC gene expression has been associated with development of airway obstruction and asthma exacerbations in urban children with asthma. However, the genetic determinants of MUC5AC expression are not established. OBJECTIVES: This study sought to assess single-nucleotide polymorphisms (SNPs) that influence MUC5AC expression and relate to pulmonary functions in childhood asthma. METHODS: This study used RNA-sequencing data from upper airway samples and performed cis-expression quantitative trait loci (eQTL) and allele-specific expression analyses in 2 cohorts of predominantly Black and Hispanic urban children, a high asthma-risk birth cohort, and an exacerbation-prone asthma cohort. Inducible MUC5AC eQTLs were further investigated during incipient asthma exacerbations. Significant eQTLs SNPs were tested for associations with lung function measurements and their functional consequences were investigated in DNA regulatory databases. RESULTS: Two independent groups of SNPs in the MUC5AC gene that were significantly associated with MUC5AC expression were identified. Moreover, these SNPs showed stronger eQTL associations with MUC5AC expression during asthma exacerbations, which is consistent with inducible expression. SNPs in 1 group also showed significant association with decreased pulmonary functions. These SNPs included multiple EGR1 transcription factor binding sites, suggesting a mechanism of effect. CONCLUSIONS: These findings demonstrate the applicability of organ-specific RNA-sequencing data to determine genetic factors contributing to a key disease pathway. Specifically, they suggest important genetic variations that may underlie propensity to mucus plugging in asthma and could be important in targeted asthma phenotyping and disease management strategies.


Subject(s)
Asthma/genetics , Early Growth Response Protein 1/metabolism , Genotype , Mucin 5AC/metabolism , Urban Population , Asthma/immunology , Birth Cohort , Child , Child, Preschool , Disease Progression , Early Growth Response Protein 1/genetics , Gene Expression Regulation , Gene Frequency , Genetic Predisposition to Disease , Humans , Infant , Mucin 5AC/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sequence Analysis, RNA
14.
Pediatr Allergy Immunol ; 32(5): 971-979, 2021 07.
Article in English | MEDLINE | ID: mdl-33606312

ABSTRACT

BACKGROUND: Nasal allergen challenge (NAC) could be a means to assess indication and/or an outcome of allergen-specific therapies, particularly for perennial allergens. NACs are not commonly conducted in children with asthma, and cockroach NACs are not well established. This study's objective was to identify a range of German cockroach extract doses that induce nasal symptoms and to assess the safety of cockroach NAC in children with asthma. METHODS: Ten adults (18-37 years) followed by 25 children (8-14 years) with well-controlled, persistent asthma and cockroach sensitization underwent NAC with diluent followed by up to 8 escalating doses of cockroach extract (0.00381-11.9 µg/mL Bla g 1). NAC outcome was determined by Total Nasal Symptom Score (TNSS) and/or sneeze score. Cockroach allergen-induced T-cell activation and IL-5 production were measured in peripheral blood mononuclear cells. RESULTS: 67% (6/9) of adults and 68% (17/25) of children had a positive NAC at a median response dose of 0.120 µg/mL [IQR 0.0380-0.379 µg/mL] of Bla g 1. Additionally, three children responded to diluent alone and did not receive any cockroach extract. Overall, 32% (11/34) were positive with sneezes alone, 15% (5/34) with TNSS alone, and 21% (7/34) with both criteria. At baseline, NAC responders had higher cockroach-specific IgE (P = .03), lower cockroach-specific IgG/IgE ratios (children, P = .002), and increased cockroach-specific IL-5-producing T lymphocytes (P = .045). The NAC was well tolerated. CONCLUSION: We report the methodology of NAC development for children with persistent asthma and cockroach sensitization. This NAC could be considered a tool to confirm clinically relevant sensitization and to assess responses in therapeutic studies.


Subject(s)
Asthma , Cockroaches , Allergens , Animals , Asthma/drug therapy , Child , Humans , Leukocytes, Mononuclear , Nasal Provocation Tests
15.
J Allergy Clin Immunol Pract ; 8(9): 3021-3028.e2, 2020 10.
Article in English | MEDLINE | ID: mdl-32376491

ABSTRACT

BACKGROUND: Perennial aeroallergen sensitization is associated with greater asthma morbidity and is required for treatment with omalizumab. OBJECTIVE: To investigate the predictive relationship between the number of aeroallergen sensitizations, total serum IgE, and serum eosinophil count, and response to omalizumab in children and adolescents with asthma treated during the fall season. METHODS: This analysis includes inner-city patients with persistent asthma and recent exacerbations aged 6-20 years comprising the placebo- and omalizumab-treated groups in 2 completed randomized clinical trials, the Inner-City Anti-IgE Therapy for Asthma study and the Preventative Omalizumab or Step-Up Therapy for Fall Exacerbations study. Logistic regression modeled the relationship between greater degrees of markers of allergic inflammation and the primary outcome of fall season asthma exacerbations. RESULTS: The analysis included 761 participants who were 62% male and 59% African American with a median age of 10 years. Fall asthma exacerbations were significantly higher in children with greater numbers of aeroallergen-specific sensitizations in the placebo group (odds ratio [OR], 1.33; 95% confidence interval [CI], 1.11-1.60; P < .01), but not in the omalizumab-treated children (OR, 1.08; 95% CI, 0.91-1.28; P = .37), indicating a significant differential effect (P < .01). Likewise, there was a differential effect of omalizumab treatment in children with greater baseline total serum IgE levels (P < .01) or greater baseline serum eosinophil counts (P < .01). Multiple aeroallergen sensitization was the best predictor of response to omalizumab; treated participants sensitized to ≥4 different groups of aeroallergens had a 51% reduction in the odds of a fall exacerbation (OR, 0.49; 95% CI, 0.30-0.81; P < .01). CONCLUSIONS: In preventing fall season asthma exacerbations, treatment with omalizumab was most beneficial in children with a greater degree of allergic inflammation.


Subject(s)
Anti-Asthmatic Agents , Asthma , Eosinophilia , Adolescent , Adult , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Asthma/epidemiology , Child , Female , Humans , Immunoglobulin E , Male , Omalizumab/therapeutic use , Seasons , Young Adult
16.
Eur J Immunol ; 50(10): 1550-1559, 2020 10.
Article in English | MEDLINE | ID: mdl-32383224

ABSTRACT

Rhinovirus (RV) infections are linked to the development and exacerbation of allergic diseases including allergic asthma. IgE, another contributor to atopic disease pathogenesis, has been shown to regulate DC antiviral functions and influence T cell priming by monocytes. We previously demonstrated that IgE-mediated stimulation of monocytes alters multiple cellular functions including cytokine secretion, phagocytosis, and influenza-induced Th1 development. In this study, we investigate the effects of IgE-mediated stimulation on monocyte-driven, RV-induced T cell development utilizing primary human monocyte-T cell co-cultures. We demonstrate that IgE crosslinking of RV-exposed monocytes enhances monocyte-driven Th2 differentiation. This increase in RV-induced Th2 development was regulated by IgE-mediated inhibition of virus-induced type I IFN and induction of IL-10. These findings suggest an additional mechanism by which two clinically significant risk factors for allergic disease exacerbations-IgE-mediated stimulation and rhinovirus infection-may synergistically promote Th2 differentiation and allergic inflammation.


Subject(s)
Hypersensitivity/immunology , Immunoglobulin E/metabolism , Interleukin-10/metabolism , Monocytes/immunology , Picornaviridae Infections/immunology , Rhinovirus/immunology , Th2 Cells/immunology , Cell Differentiation , Cells, Cultured , Coculture Techniques , Humans , Hypersensitivity/epidemiology , Interferon Type I/metabolism , Lymphocyte Activation , Picornaviridae Infections/epidemiology , Risk , United States/epidemiology
19.
Curr Opin Allergy Clin Immunol ; 20(1): 56-63, 2020 02.
Article in English | MEDLINE | ID: mdl-31789871

ABSTRACT

PURPOSE OF REVIEW: Dendritic cells are critical in directing inflammatory versus tolerogenic responses. As the burden of allergic disease rises worldwide, increased understanding of mechanisms underlying these diseases is needed. This review highlights research demonstrating how dendritic cells influence allergic disease development, providing important mechanistic insights into current clinical management strategies as well as potential areas of focus for future development of novel therapeutic strategies. RECENT FINDINGS: Recent studies continue to elucidate dendritic cell-associated pathways which can either promote or prevent allergic inflammation. Mechanisms involved include various aspects of dendritic cell activity, from antigen sampling and dendritic cell migration to complex dendritic cell interactions with other immune cells, infectious agents and allergens. A deeper understanding of these mechanisms and how dendritic cells promote tolerance provides insight into potential strategies to therapeutically target dendritic cells in the management of allergic disease. SUMMARY: Recent discoveries illustrate crucial roles of dendritic cells as regulators of inflammatory versus tolerant cascades. Building on lessons from oncologic strategies for harnessing dendritic cells to promote antitumor responses, several novel pathways could also be targeted to promote dendritic cell-mediated tolerogenesis in the context of allergy. Additional studies are needed to further define the roles and potential effects of dendritic cells in these potential strategies to reduce allergic inflammation.


Subject(s)
Dendritic Cells/immunology , Hypersensitivity/immunology , Inflammation/immunology , Animals , Antigen Presentation , Cell Movement , Cytokines/metabolism , Humans , Immune Tolerance , Immunity, Cellular
20.
Nat Immunol ; 20(5): 637-651, 2019 05.
Article in English | MEDLINE | ID: mdl-30962590

ABSTRACT

Respiratory infections are common precursors to asthma exacerbations in children, but molecular immune responses that determine whether and how an infection causes an exacerbation are poorly understood. By using systems-scale network analysis, we identify repertoires of cellular transcriptional pathways that lead to and underlie distinct patterns of asthma exacerbation. Specifically, in both virus-associated and nonviral exacerbations, we demonstrate a set of core exacerbation modules, among which epithelial-associated SMAD3 signaling is upregulated and lymphocyte response pathways are downregulated early in exacerbation, followed by later upregulation of effector pathways including epidermal growth factor receptor signaling, extracellular matrix production, mucus hypersecretion, and eosinophil activation. We show an additional set of multiple inflammatory cell pathways involved in virus-associated exacerbations, in contrast to squamous cell pathways associated with nonviral exacerbations. Our work introduces an in vivo molecular platform to investigate, in a clinical setting, both the mechanisms of disease pathogenesis and therapeutic targets to modify exacerbations.


Subject(s)
Asthma/immunology , Gene Regulatory Networks/immunology , Transcriptome/immunology , Virus Diseases/immunology , Adolescent , Asthma/genetics , Asthma/virology , Case-Control Studies , Child , Common Cold/genetics , Common Cold/immunology , Common Cold/virology , Female , Humans , Longitudinal Studies , Male , Prospective Studies , Signal Transduction/genetics , Signal Transduction/immunology , Virus Diseases/genetics , Virus Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...