Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 281(29): 20011-7, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-16704976

ABSTRACT

Voltage-gated calcium channels (Ca(v)) 2.2 currents are potentiated by phorbol-12-myristate, 13-acetate (PMA), whereas Ca(v) 2.3 currents are increased by both PMA and acetyl-beta-methylcholine (MCh). MCh-selective sites were identified in the alpha(1) 2.3 subunit, whereas the identified PMA sites responded to both PMA and MCh (Kamatchi, G. L., Franke, R., Lynch, C., III, and Sando, J. J. (2004) J. Biol. Chem. 279, 4102-4109; Fang, H., Franke, R., Patanavanich, S., Lalvani, A., Powell, N. K., Sando, J. J., and Kamatchi, G. L. (2005) J. Biol. Chem. 280, 23559-23565). The hypothesis that PMA sites in the alpha(1) 2.2 subunit are homologous to the PMA-responsive sites in alpha(1) 2.3 subunit was tested with Ser/Thr --> Ala mutations in the alpha(1) 2.2 subunit. WT alpha(1) 2.2 or mutants were expressed in Xenopus oocytes in combination with beta1b and alpha2/delta subunits. Inward current (I(Ba)) was recorded using Ba(2+) as the charge carrier. T422A, S1757A, S2108A, or S2132A decreased the PMA response. In contrast, S425A increased the response to PMA, and thus, it was considered an inhibitory site. Replacement of each of the identified stimulatory Ser/Thr sites with Asp increased the basal current and decreased the PMA-induced enhancement, consistent with regulation by phosphorylation at these sites. Multiple mutant combinations showed (i) greater inhibition than that caused by the single Ala mutations; (ii) that enhancement observed when Thr-422 and Ser-2108 are available may be inhibited by the presence of Ser-425; and (iii) that the combination of Thr-422, Ser-2108, and either Ser-1757 or Ser-2132 can provide a greater response to PMA when Ser-425 is replaced with Ala. The homologous sites in alpha(1) 2.2 and alpha(1) 2.3 subunits seem to be functionally different. The existence of an inhibitory phosphorylation site in the I-II linker seems to be unique to the alpha(1) 2.2 subunit.


Subject(s)
Calcium Channels, N-Type/physiology , Serine , Tetradecanoylphorbol Acetate/pharmacology , Alternative Splicing , Amino Acid Substitution , Animals , Calcium Channels, N-Type/drug effects , Calcium Channels, N-Type/genetics , DNA, Complementary/genetics , Female , Genetic Variation , Kinetics , Methacholine Chloride/pharmacology , Oocytes/physiology , Phosphorylation , Protein Kinase C/metabolism , Protein Subunits/genetics , Protein Subunits/physiology , Rats , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , Superior Cervical Ganglion/physiology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...