Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(12)2023 06 14.
Article in English | MEDLINE | ID: mdl-37371097

ABSTRACT

Genomic instability is a prominent hallmark of cancer, however the mechanisms that drive and sustain this process remain elusive. Research demonstrates that numerous cancers with increased levels of genomic instability ectopically express meiosis-specific genes and undergo meiomitosis, the clash of mitotic and meiotic processes. These meiotic genes may represent novel therapeutic targets for the treatment of cancer. We studied the relationship between the expression of the meiosis protein HORMAD1 and genomic instability in squamous cell carcinomas (SCCs). First, we assessed markers of DNA damage and genomic instability following knockdown and overexpression of HORMAD1 in different cell lines representing SCCs and epithelial cancers. shRNA-mediated depletion of HORMAD1 expression resulted in increased genomic instability, DNA damage, increased sensitivity to etoposide, and decreased expression of DNA damage response/repair genes. Conversely, overexpression of HORMAD1 exhibited protective effects leading to decreased DNA damage, enhanced survival and decreased sensitivity to etoposide. Furthermore, we identified a meiotic molecular pathway that regulates HORMAD1 expression by targeting the upstream meiosis transcription factor STRA8. Our results highlight a specific relationship between HORMAD1 and genomic instability in SCCs, suggesting that selectively inhibiting HORMAD1, possibly, through STRA8 signaling, may provide a new paradigm of treatment options for HORMAD1-expressing SCCs.


Subject(s)
Carcinoma, Squamous Cell , Genomic Instability , Humans , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Damage/genetics , DNA Repair/genetics , Etoposide/pharmacology , Genomic Instability/genetics , Meiosis/genetics , Mitosis/genetics
2.
Cancers (Basel) ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35892887

ABSTRACT

Keratinocyte carcinomas are among the most prevalent malignancies worldwide. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are the two cancers recognized as keratinocyte carcinomas. The standard of care for treating these cancers includes surgery and ablative therapies. However, in recent years, targeted therapies (e.g., cetuximab for cSCC and vismodegib/sonidegib for BCC) have been used to treat advanced disease as well as immunotherapy (e.g., cemiplimab). These treatments are expensive and have significant toxicities with objective response rates approaching ~50-65%. Hence, there is a need to dissect the molecular pathogenesis of these cancers to identify novel biomarkers and therapeutic targets to improve disease management. Several cancer-testis antigens (CTA) and developmental genes (including embryonic stem cell factors and fetal genes) are ectopically expressed in BCC and cSCC. When ectopically expressed in malignant tissues, functions of these genes may be recaptured to promote tumorigenesis. CTAs and developmental genes are emerging as important players in the pathogenesis of BCC and cSCC, positioning themselves as attractive candidate biomarkers and therapeutic targets requiring rigorous testing. Herein, we review the current research and offer perspectives on the contributions of CTAs and developmental genes to the pathogenesis of keratinocyte carcinomas.

3.
Cells ; 11(4)2022 02 09.
Article in English | MEDLINE | ID: mdl-35203244

ABSTRACT

Cutaneous T cell lymphoma (CTCL) is a spectrum of lymphoproliferative disorders caused by the infiltration of malignant T cells into the skin. The most common variants of CTCL include mycosis fungoides (MF), Sézary syndrome (SS) and CD30+ Lymphoproliferative disorders (CD30+ LPDs). CD30+ LPDs include primary cutaneous anaplastic large cell lymphoma (pcALCL), lymphomatoid papulosis (LyP) and borderline CD30+ LPD. The frequency of MF, SS and CD30+ LPDs is ~40-50%, <5% and ~10-25%, respectively. Despite recent advances, CTCL remains challenging to diagnose. The mechanism of CTCL carcinogenesis still remains to be fully elucidated. Hence, experiments in patient-derived cell lines and xenografts/genetically engineered mouse models (GEMMs) are critical to advance our understanding of disease pathogenesis. To enable this, understanding the intricacies and limitations of each individual model system is highly important. Presently, 11 immortalized patient-derived cell lines and different xenograft/GEMMs are being used to study the pathogenesis of CTCL and evaluate the therapeutic efficacy of various treatment modalities prior to clinical trials. Gene expression studies, and the karyotyping analyses of cell lines demonstrated that the molecular profile of SeAx, Sez4, SZ4, H9 and Hut78 is consistent with SS origin; MyLa and HH resemble the molecular profile of advanced MF, while Mac2A and PB2B represent CD30+ LPDs. Molecular analysis of the other two frequently used Human T-Cell Lymphotropic Virus-1 (HTLV-1)+ cell lines, MJ and Hut102, were found to have characteristics of Adult T-cell Leukemia/Lymphoma (ATLL). Studies in mouse models demonstrated that xenograft tumors could be grown using MyLa, HH, H9, Hut78, PB2B and SZ4 cells in NSG (NOD Scid gamma mouse) mice, while several additional experimental GEMMs were established to study the pathogenesis, effect of drugs and inflammatory cytokines in CTCL. The current review summarizes cell lines and xenograft/GEMMs used to study and understand the etiology and heterogeneity of CTCL.


Subject(s)
Human T-lymphotropic virus 1 , Lymphoma, T-Cell, Cutaneous , Lymphomatoid Papulosis , Mycosis Fungoides , Sezary Syndrome , Skin Neoplasms , Animals , Cell Line , Heterografts , Humans , Ki-1 Antigen/analysis , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/pathology , Lymphomatoid Papulosis/genetics , Lymphomatoid Papulosis/pathology , Lymphomatoid Papulosis/therapy , Mice , Mycosis Fungoides/pathology , Sezary Syndrome/pathology , Skin Neoplasms/pathology
4.
J Am Soc Echocardiogr ; 30(8): 790-796, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28599828

ABSTRACT

BACKGROUND: Stress echocardiography has been advocated for the detection of abnormal myocardial function and unmasking diminished myocardial reserve in pediatric patients. The aim of this study was to create a simplified index of myocardial reserve, derived from the myocardial inotropic response to peak semisupine exercise in healthy children, and illustrate its applicability in a sample of pediatric oncology patients. METHODS: In this prospective analysis, children (7-18 years of age) with normal cardiac structure and function performed semisupine stress echocardiography to volitional fatigue. The quotient of wall stress at peak systole and heart rate-corrected velocity of circumferential fiber shortening were calculated at baseline and at peak exercise, the difference of which was termed the index of myocardial reserve (IMR). The IMR was also calculated in a retrospective sample of pediatric oncology patients with normal resting left ventricular function who had received anthracycline treatment and had performed the same exercise protocol to illustrate utility. RESULTS: Fifty healthy subjects (mean age, 13.2 ± 2.6 years) and 33 oncology patients (mean age, 12.7 ± 4.0 years) were assessed. In the healthy children at peak exercise, heart rate-corrected velocity of circumferential fiber shortening significantly increased (from 1.17 ± 0.17 to 1.58 ± 0.24 circ · sec-1, P < .001), while the quotient of wall stress at peak systole significantly decreased (from 75.3 ± 17.1 to 55.3 ± 13.8 g · cm-2, P < .001), shifting the plot of the relationship between the two parameters upward and to the left. The mean IMR was -30.8 ± 17.8, and the normal distribution ranged from -4.7 (fifth percentile) to -67.3 (95th percentile). The IMR was abnormal in 10 oncology patients who were treated with anthracyclines. CONCLUSIONS: The authors have developed a novel IMR. Relative to the normal distribution of this IMR in healthy subjects, it is possible to identify patients with abnormal myocardial reserve. Thus, this study demonstrates the application of the IMR to aid in clinical decision making in individual patients.


Subject(s)
Echocardiography, Doppler/methods , Echocardiography, Stress/methods , Exercise/physiology , Myocardial Contraction/physiology , Posture/physiology , Stroke Volume/physiology , Ventricular Function, Left/physiology , Adolescent , Child , Female , Humans , Male , Prospective Studies , Reference Values , Systole
5.
Biotechnol J ; 1(10): 1158-62, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17125131

ABSTRACT

An antibiotic, cefotaxime (Omnatax) has been found to promote somatic embryogenesis and subsequent plant regeneration in vitro in indica-type basmati rice cultures. Response was highly genotype specific. The number, mass and morphology of the calli formed on the scutellar tissues were dependent on the growth medium (with or without cefotaxime). The embryogenic nature of nodular calli was confirmed through histological analysis and their plant regeneration ability. The calli of variety Pusa basmati 1 grown on medium supplemented with cefotaxime (100 mg/L) exhibited up to 70.5% plant regeneration as compared to control (51.51%). Plants regenerated from emryogenic calli were phenotypically normal and identical to seed-derived plants and exhibited normal fertility. A limited humidity and an optimal aeration of the culture tubes further enhanced the frequency of somatic embryogenesis and plant regeneration.


Subject(s)
Cefotaxime/administration & dosage , Embryonic Development/physiology , Oryza/embryology , Oryza/physiology , Plant Stems/embryology , Plant Stems/physiology , Regeneration/physiology , Anti-Bacterial Agents/administration & dosage , Embryonic Development/drug effects , Oryza/drug effects , Plant Stems/drug effects , Regeneration/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...