Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 13(4): 429-36, 2004 Feb 15.
Article in English | MEDLINE | ID: mdl-14709595

ABSTRACT

The defective splicing of pre-mRNA is a major cause of human disease. Exon skipping is a common result of splice mutations and has been reported in a wide variety of genetic disorders, yet the underlying mechanism is poorly understood. Often, such mutations are incompletely penetrant, and low levels of normal transcript and protein are maintained. Familial dysautonomia (FD) is caused by mutations in IKBKAP, and all cases described to date involve an intron 20 mutation that results in a unique pattern of tissue-specific exon skipping. Accurate splicing of the mutant IKBKAP allele is particularly inefficient in the nervous system. Here we show that treatment with the plant cytokinin kinetin alters splicing of IKBKAP. Kinetin significantly increases inclusion of exon 20 from the endogenous gene, as well as from an IKBKAP minigene. By contrast the drug does not enhance inclusion of alternatively spliced exon 31 in MYO5A. Benzyladenine, the most closely related cytokinin, showed a similar but less dramatic effect. Our findings reveal a remarkable impact on splicing fidelity by these small molecules, which therefore provide new tools for the dissection of mechanisms controlling tissue-specific pre-mRNA splicing. Further, kinetin should be explored as a treatment for increasing the level of normal IKAP in FD, and for other splicing disorders that may share a similar mechanism.


Subject(s)
Adenine/analogs & derivatives , Adenine/pharmacology , Alternative Splicing/drug effects , Cytokinins/pharmacology , Dysautonomia, Familial/genetics , RNA Precursors/genetics , Alternative Splicing/genetics , Carrier Proteins/genetics , Cells, Cultured , Exons/genetics , Humans , Kinetin , Myosin Heavy Chains/genetics , Myosin Type V/genetics , RNA, Messenger/genetics , Transcriptional Elongation Factors
2.
Brain Res ; 983(1-2): 209-14, 2003 Sep 05.
Article in English | MEDLINE | ID: mdl-12914982

ABSTRACT

Familial dysautonomia (FD) is the best-known and most common member of a group of congenital sensory/autonomic neuropathies characterized by widespread sensory and variable autonomic dysfunction. As opposed to the sensory/motor neuropathies, little is known about the causes of neuronal dysfunction and loss in the sensory/autonomic neuropathies. FD involves progressive neuronal degeneration, has a broad impact on the operation of many of the body's systems, and leads to a markedly reduced quality of life and premature death. In 2001, we identified two mutations in the IKBKAP gene that result in FD. IKBKAP encodes IKAP, a member of the putative human holo-Elongator complex, which may facilitate transcription by RNA polymerase II. Whether or not the Elongator plays this role is moot. The FD mutation found on >99.5% of FD chromosomes does not cause complete loss of function. Instead, it results in a tissue-specific decrease in splicing efficiency of the IKBKAP transcript; cells from patients retain some capacity to produce normal mRNA and protein. To better understand the relationship between the genotype of FD patients and their phenotype, we have used in situ hybridization histochemistry to map the IKAP mRNA in sections of whole rat embryos. The mRNA is widely distributed. Highest levels are in the nervous system, but substantial amounts are also present in peripheral organs.


Subject(s)
Carrier Proteins/genetics , Dysautonomia, Familial/genetics , RNA, Messenger/genetics , Animals , Autoradiography , Carrier Proteins/biosynthesis , Embryo, Mammalian/metabolism , Embryonic and Fetal Development/physiology , Female , Gene Expression Regulation, Developmental/physiology , Humans , Pregnancy , RNA, Messenger/biosynthesis , RNA-Binding Proteins , Rats , Tissue Distribution , Transcriptional Elongation Factors
3.
Am J Med Genet A ; 118A(4): 305-8, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12687659

ABSTRACT

Familial Dysautonomia is an autosomal recessive disease with a remarkably high carrier frequency in the Ashkenazi Jewish population. It has recently been estimated that as many as 1 in 27 Ashkenazi Jews is a carrier of FD. The FD gene has been identified as IKBKAP, and two disease-causing mutations have been identified. The most common mutation, which is present on 99.5% of all FD chromosomes, is an intronic splice site mutation that results in tissue-specific skipping of exon 20. The second mutation, R696P, is a missense mutation that has been identified in 4 unrelated patients heterozygous for the major splice mutation. Interestingly, despite the fact that FD is a recessive disease, normal mRNA and protein are expressed in patient cells. To date, the diagnosis of FD has been limited to individuals of Ashkenazi Jewish descent and identification of the gene has led to widespread diagnostic and carrier testing in this population. In this report, we describe the first non-Jewish IKBKAP mutation, a proline to leucine missense mutation in exon 26, P914L. This mutation is of particular significance because it was identified in a patient who lacks one of the cardinal diagnostic criteria for the disease-pure Ashkenazi Jewish ancestry. In light of this fact, the diagnostic criteria for FD must be expanded. Furthermore, in order to ensure carrier identification in all ethnicities, this mutation must now be considered when screening for FD.


Subject(s)
Dysautonomia, Familial/ethnology , Dysautonomia, Familial/genetics , Mutation, Missense/genetics , Child, Preschool , DNA Mutational Analysis , Humans , Jews/genetics , Restriction Mapping
4.
Am J Hum Genet ; 72(3): 749-58, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12577200

ABSTRACT

We recently identified a mutation in the I-kappa B kinase associated protein (IKBKAP) gene as the major cause of familial dysautonomia (FD), a recessive sensory and autonomic neuropathy. This alteration, located at base pair 6 of the intron 20 donor splice site, is present on >99.5% of FD chromosomes and results in tissue-specific skipping of exon 20. A second FD mutation, a missense change in exon 19 (R696P), was seen in only four patients heterozygous for the major mutation. Here, we have further characterized the consequences of the major mutation by examining the ratio of wild-type to mutant (WT:MU) IKBKAP transcript in EBV-transformed lymphoblast lines, primary fibroblasts, freshly collected blood samples, and postmortem tissues from patients with FD. We consistently found that WT IKBKAP transcripts were present, albeit to varying extents, in all cell lines, blood, and postmortem FD tissues. Further, a corresponding decrease in the level of WT protein is seen in FD cell lines and tissues. The WT:MU ratio in cultured lymphoblasts varied with growth phase but not with serum concentration or inclusion of antibiotics. Using both densitometry and real-time quantitative polymerase chain reaction, we found that relative WT:MU IKBKAP RNA levels were highest in cultured patient lymphoblasts and lowest in postmortem central and peripheral nervous tissues. These observations suggest that the relative inefficiency of WT IKBKAP mRNA production from the mutant alleles in the nervous system underlies the selective degeneration of sensory and autonomic neurons in FD.Therefore, exploration of methods to increase the WT:MU IKBKAP transcript ratio in the nervous system offers a promising approach for developing an effective therapy for patients with FD.


Subject(s)
Alternative Splicing , Carrier Proteins/genetics , Dysautonomia, Familial/genetics , Mutation , Cell Line , Exons , Genes, Recessive , Herpesvirus 4, Human , Humans , Lymphocytes , Organ Specificity , Transcription, Genetic , Transcriptional Elongation Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...