Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6380, 2024 03 16.
Article in English | MEDLINE | ID: mdl-38493184

ABSTRACT

Globally, salinity is an important abiotic stress in agriculture. It induced oxidative stress and nutritional imbalance in plants, resulting in poor crop productivity. Applying silicon (Si) can improve the uptake of macronutrients. On the other hand, using biochar as a soil amendment can also decrease salinity stress due to its high porosity, cation exchange capacity, and water-holding capacity. That's why the current experiment was conducted with novelty to explore the impact of silicon nanoparticle-based biochar (Si-BC) on wheat cultivated on salt-affected soil. There were 3 levels of Si-BC, i.e., control (0), 1% Si-BC1, and 2.5% Si-BC2 applied in 3 replicates under 0 and 200 mM NaCl following a completely randomized design. Results showed that treatment 2.5% Si-BC2 performed significantly better for the enhancement in shoot and root length, shoot and root fresh weight, shoot and root dry weight, number of leaves, number of tillers, number of spikelets, spike length, spike fresh and dry weight compared to control under no stress and salinity stress (200 mM NaCl). A significant enhancement in chlorophyll a (~ 18%), chlorophyll b (~ 22%), total chlorophyll (~ 20%), carotenoid (~ 60%), relative water contents (~ 58%) also signified the effectiveness of treatment 2.5% Si-BC2 than control under 200 mM NaCl. In conclusion, treatment 2.5% Si-BC2 can potentially mitigate the salinity stress in wheat by regulating antioxidants and improving N, K concentration, and gas exchange attributes while decreasing Na and Cl concentration and electrolyte leakage. More investigations at the field level are recommended for the declaration of treatment 2.5% Si-BC2 as the best amendment for alleviating salinity stress in different crops under variable climatic conditions.


Subject(s)
Charcoal , Silicon , Antioxidants/pharmacology , Chlorophyll A , Nutrients , Salinity , Salt Stress , Silicon/pharmacology , Sodium Chloride , Soil , Triticum , Water
2.
Sci Rep ; 13(1): 8249, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217569

ABSTRACT

The growth of wheat (Triticum aestivum) is constrained by soil salinity, although some fungal species have been shown to enhance production in saline environments. The yield of grain crops is affected by salt stress, and this study aimed to investigate how arbuscular mycorrhizal fungus (AMF) mitigates salt stress. An experiment was conducted to assess the impact of AMF on wheat growth and yield in conditions of 200 mM salt stress. Wheat seeds were coated with AMF at a rate of 0.1 g (108 spores) during sowing. The results of the experiment demonstrated that AMF inoculation led to a significant improvement in the growth attributes of wheat, including root and shoot length, fresh and dry weight of root and shoot. Furthermore, a significant increase in chlorophyll a, b, total, and carotenoids was observed in the S2 AMF treatment, validating the effectiveness of AMF in enhancing wheat growth under salt stress conditions. Additionally, AMF application reduced the negative effects of salinity stress by increasing the uptake of micronutrients such as Zn, Fe, Cu, and Mn while regulating the uptake of Na (decrease) and K (increase) under salinity stress. In conclusion, this study confirms that AMF is a successful strategy for reducing the negative effects of salt stress on wheat growth and yield. However, further investigations are recommended at the field level under different cereal crops to establish AMF as a more effective amendment for the alleviation of salinity stress in wheat.


Subject(s)
Mycorrhizae , Triticum , Antioxidants , Chlorophyll A , Mycorrhizae/physiology , Homeostasis , Salt Stress , Crops, Agricultural , Oxidative Stress , Nutrients , Salinity
3.
Plant Physiol Biochem ; 196: 130-138, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36706692

ABSTRACT

Chromium (Cr) is a hazardous metal that has a significant risk of transfer from soil to edible parts of food crops, including shoot tissues. Reduction of Cr accumulation is required to lower the risk of Cr-exposed in humans and animals feeding on metal-contaminated parts of such plant. Zea mays is a global staple crop irrigated intensively with Cr-contaminated water. Consequently, the objective of this study was to investigate that FI-stabilized ZnO NPs could be used as an eco-friendly and efficient amendment to reduced Cr uptake and toxicity in Zea mays. To investigate the growth parameters, physiological, oxidative stress and biochemical parameters under different Cr-VI concentrations (10.0, 15.0, and 20.0 ppm). Cr exposed Z. mays plants exhibited substantially reduced plant biomass, chlorophyll contents, and altered antioxidant enzyme activity compared to untreated control. The results revealed that foliar application of Fagonia-ZnO-NPs helps eliminate the harmful effects of Cr (VI), which can enter plants through soil pollution. Increased levels of proline, soluble sugars and various antioxidant enzymes reflected this. Mean comparisons showed that Cr stress led to a 33-50% reduction in fresh shoot weight, 73-170% in fresh root weight, 16-34% shoot length, 9.5-129% root length, Chlorophyll contents 20-33% (Chl a), 18-27% (Chl b) and 17-27% (car), 14-33% total soluble sugars, 54-170% proline content, 7-7.5% POD, 0.66-75% CAT and 32-77% APX enzyme activities compared to untreated plants. Application of FI-stabilized ZnO NPs led to an increase 21-77% in fresh shoot weight, 22-45%, fresh root weight, 3-35% shoot length, 24-154% root length, Chlorophyll contents 39-60% (Chl a), 15-79% (Chl b) and 28-82% (car), 19-52% total soluble sugars, 21-55% proline content, 14-43% POD, 34-95% CAT and 130-186% APX enzyme activities under 10, 15 and 20 ppm Cr stress respectively, compared to Cr-treated plants. However, the principal component analysis revealed that chlorophyll contents, carotenoid, CAT, APX and length were in the same group and showed a positive correlation. These data collectively suggest that phytostabilized zinc oxide NPs may be an eco-friendly solution to mitigate Cr toxicity in agricultural soils and crop plants.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Humans , Antioxidants , Zinc Oxide/pharmacology , Zea mays , Chlorophyll/analysis , Chromium/toxicity , Proline , Soil Pollutants/toxicity , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...