Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(12): 4947-4959, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36898368

ABSTRACT

Flexible synthetic routes to crystalline metal-rich to phosphorus-rich nickel phosphides are highly desired for comparable electrocatalytic HER studies. This report details solvent-free, direct, and tin-flux-assisted synthesis of five different nickel phosphides from NiCl2 and phosphorus at moderate temperatures (500 °C). Direct reactions are thermodynamically driven via PCl3 formation and tuned through reaction stoichiometry to produce crystalline Ni-P materials from metal-rich (Ni2P, Ni5P4) to phosphorus-rich (cubic NiP2) compositions. A tin flux in NiCl2/P reactions allows access to monoclinic NiP2 and NiP3. Intermediates in tin flux reactions were isolated to help identify phosphorus-rich Ni-P formation mechanisms. These crystalline micrometer-sized nickel phosphide powders were affixed to carbon-wax electrodes and investigated as HER electrocatalysts in acidic electrolyte. All nickel phosphides show moderate HER activity in a potential range of -160 to -260 mV to achieve current densities of 10 mA/cm2 ordered as c-NiP2 ≥ Ni5P4 > NiP3 > m-NiP2 > Ni2P, with NiP3 activity showing some particle size influence. Phosphorus-rich c/m-NiP2 appears most stable under acidic conditions during extended reactions. The HER activity of these different nickel phosphides appears influenced by a combination of factors such as particle size, phosphorus content, polyphosphide anions, and surface charge.

2.
Molecules ; 27(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014292

ABSTRACT

The facile solvent-free synthesis of several known metal thiophosphates was accomplished by a chemical exchange reaction between anhydrous metal chlorides and elemental phosphorus with sulfur, or combinations of phosphorus with molecular P2S5 at moderate 500 °C temperatures. The crystalline products obtained from this synthetic approach include MPS3 (M = Fe, Co, Ni) and Cu3PS4. The successful reactions benefit from thermochemically favorable PCl3 elimination. This solvent-free route performed at moderate temperatures leads to mixed anion products with complex heteroatomic anions, such as P2S64−. The MPS3 phases are thermally metastable relative to the thermodynamically preferred separate MPx/ MSy and more metal-rich MPxSy phases. The micrometer-sized M-P-S products exhibit room-temperature optical and magnetic properties consistent with isolated metal ion structural arrangements and semiconducting band gaps. The MPS3 materials were examined as electrocatalysts in hydrogen evolution reactions (HER) under acidic conditions. In terms of HER activity at lower applied potentials, the MPS3 materials show the trend of Co > Ni >> Fe. Extended time constant potential HER experiments show reasonable HER stability of ionic and semiconducting MPS3 (M = Co, Ni) structures under acidic reducing conditions.

3.
ACS Mater Au ; 2(4): 489-504, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35875344

ABSTRACT

Metal borides have long-standing uses due to their desirable chemical and physical properties such as high melting points, hardness, electrical conductivity, and chemical stability. Typical metal boride preparations utilize high-energy and/or slow thermal heating processes. This report details a facile, solvent-free single-step synthesis of several crystalline metal monoborides containing earth-abundant transition metals. Rapid and exothermic self-propagating solid-state metathesis (SSM) reactions between metal halides and MgB2 form crystalline FeB, CoB, and NiB in seconds without sustained external heating and with high isolated product yields (∼80%). The metal borides are formed using a well-studied MgB2 precursor and compared to reactions using separate Mg and B reactants, which also produce self-propagating reactions and form crystalline metal borides. These SSM reactions are sufficiently exothermic to theoretically raise reaction temperatures to the boiling point of the MgCl2 byproduct (1412 °C). The chemically robust monoborides were examined for their ability to perform electrocatalytic water oxidation and reduction. Crystalline CoB and NiB embedded on carbon wax electrodes exhibit moderate and stable bifunctional electrocatalytic water splitting activity, while FeB only shows appreciable hydrogen evolution activity. Analysis of catalyst particles after extended electrocatalytic experiments shows that the bulk crystalline metal borides remain intact during electrochemical water-splitting reactions though surface oxygen species may impact electrocatalytic activity.

4.
Inorg Chem ; 58(8): 5013-5024, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30901203

ABSTRACT

Metal phosphides from the 3d period exhibit a range of structures and compositions. Many metal-rich phosphides and monophosphides function as heterogeneous electrocatalysts in the hydrogen evolution reaction. This paper describes the direct and tin flux-assisted synthesis of phosphorus-rich metal phosphides with MP2 or MP3 compositions. The facile synthesis of FeP2, CoP3, NiP2, and CuP2 is thermochemically driven by PCl3 formation from reactions of anhydrous metal halides and P4 vapor at 500 °C. Well-crystallized micrometer-sized particles result from these solvent-free reactions. A tin flux leads to more complete reactions at lower temperature for FeP2 and enables synthesis of a monoclinic polymorph of NiP2 rather than the kinetic cubic product formed by direct reaction. These crystalline metal phosphides are investigated as electrocatalyts for hydrogen evolution in acidic and buffered aqueous solutions. All phosphorus-rich products show very good stability in strongly acidic media. The catalytic activity for hydrogen evolution ordered by higher current at a fixed electrode geometric area and low onset potential is CoP3 > NiP2 (cubic and monoclinic) > FeP2 ≫ CuP2. At high applied potentials, CuP2 undergoes surface reactions and roughening that improve its electrocatalytic activity. Correlations of the observed electrocatalytic activity with electrochemically active surface area, particle size, metallic versus semiconducting properties, and local metal coordination environment are noted for these phosphorus-rich 3d metal phosphides.

5.
Nanoscale Adv ; 1(10): 3918-3928, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-36132108

ABSTRACT

Aluminosilicate-based zeolite materials, such as ZSM-5 and mordenite, are well-studied as catalysts. Typical approaches to synthesize these zeolites require either templates or seeds to direct ordered crystal growth and both of these are expensive and add to the complexity of zeolite synthesis. In this paper, we describe a solvent-free and template-free method to synthesize crystalline ZSM-5 and mordenite zeolites without any added seed crystals. Key to the success of this approach is a mechanochemical precursor pre-reaction step. High-energy ball-milling is used to initiate a solid-state metathesis (exchange) reaction between Na2SiO3 and Al2(SO4)3 reagents, forming crystalline Na2SO4 and well-mixed aluminosilicate precursor. The solid precursor mixture is thermally converted to crystalline ZSM-5 or mordenite at moderate 180 °C temperatures without solvents or an organic amine structure directing template. Variations in Si/Al ratios in the precursor mixture and additions of solid NaOH to the mechanochemical reaction were found to influence the subsequent growth of either crystalline ZSM-5 or mordenite zeolites. The crystalline zeolites from this solvent-free and template free method have high ∼300 m2 g-1 surface areas directly from the synthesis without requiring high-temperature calcination. These materials are also comparably active to their commercial counterparts in cellulose and glucose biomass catalytic conversion to hydroxymethylfurfural.

6.
ACS Omega ; 3(3): 2947-2955, 2018 Mar 31.
Article in English | MEDLINE | ID: mdl-31458564

ABSTRACT

This study describes the UV solution photodeposition of several earth-abundant 3d transition metals (Co, Ni, and Cu) onto the surface of nanoparticulate TiO2. Irradiated methanolic metal dichloride solutions with suspended Degussa P25-TiO2 (1-2 wt % metal to TiO2) yield visibly colored titanias, whereas the bulk TiO2 structure is unchanged; X-ray photoelectron spectroscopy confirms that metals are present on the titania surface in either reduced metal (Cu/Cu+) or metal cation states (Co2+ and Ni2+), and UV-vis diffuse reflectance spectroscopy shows new visible absorbance features. The analyzed bulk metal contents (∼0.04-0.6 at. %, highest for copper) are lower than the nominal metal solution content. Mixed-metal solution photodeposition reactions roughly parallel observations for single metals, with copper deposition being most favored. These 3d metal surface-modified titanias show significant (∼5-15×) improvement in UV photocatalytic H2 evolution versus unmodified TiO2. H2 evolution rates as high as 85 µmol/h (8500 µmol h-1 g-1) were detected for Cu-coated TiO2 using continuous monitoring of reactor headspace gases by portable mass spectrometry. Control experiments verify the necessity of the methanol sacrificial oxidant in both metal deposition and H2 evolution. In situ metal surface deposition is quickly followed by enhanced H2 evolution relative to TiO2, but at lower levels than isolated metal surface-modified titanias. The photodeposited 3d metal species on the TiO2 surface likely act to reduce electron-hole recombination by facilitating the transfer of photoinduced TiO2 conduction band electrons to protons in solution that are reduced to H2. This study demonstrates a facile method to modify photoactive TiO2 nanoparticles with inexpensive 3d transition metals to improve photocatalytic hydrogen evolution, and it shows the utility of quantitative real-time gas evolution monitoring by portable mass spectrometry.

7.
Inorg Chem ; 48(10): 4470-7, 2009 May 18.
Article in English | MEDLINE | ID: mdl-19341302

ABSTRACT

This paper describes the use of solvothermally moderated metal azide decomposition as a route to nanocrystalline mid to late transition metal nitrides. This method utilizes exothermic solid-state metathesis reaction precursor pairs, namely, metal halides (NiBr(2), FeCl(3), MnCl(2)) and sodium azide, but conducts the metathesis reaction and azide decomposition in superheated toluene. The reaction temperatures are relatively low (<300 degrees C) and yield thermally metastable nanocrystalline hexagonal Ni(3)N and Fe(2)N, and tetragonal MnN. These solvothermally moderated metal nitride metathesis reactions require several days to produce high yields of the intended nitrides. The products are aggregated nanoparticulates with room temperature magnetic properties consistent with their known bulk structures, for example, Fe(2)N and Ni(3)N are known ferromagnets. The stirred reactions with dispersed fine reagent powders benefit from solvothermal moderation more effectively than submerged pressed reagent pellets. Pellet reactions produced manganese nitrides with lower nitrogen content and higher aggregation than loose powder reactions, consistent with the occurrence of significant local exothermic heating in the pellet metathesis reactions.

8.
J Am Chem Soc ; 130(23): 7373-9, 2008 Jun 11.
Article in English | MEDLINE | ID: mdl-18489099

ABSTRACT

Nitrogen-rich carbon nitride (CN x , x >/= 1) network materials have been produced as disordered structures by a variety of precursor-based methods, many that involve solid-state thermolysis at or above 500 degrees C. One popular precursor building block is the triazine unit (C 3N 3), and most postulated amorphous CN x network structures are based on cross-linked triazine units. Since hydrogen is most often observed in the product, these materials are usually more appropriately described as CN x H y materials. Results from recent carbon nitride studies using larger conjugated heptazine (C 6N 7) precursors and from rigorous structural investigations of triazine to heptazine thermal conversion processes have prompted a reexamination of likely local structures present in amorphous carbon nitride networks formed by triazine thermolysis reactions. In the present study, the formation and local structure of a CN x H y material formed via the rapid and exothermic decomposition of a reactive triazine precursor, C 3N 3(NHCl) 3, was examined by byproduct gas mass spectrometry, NMR and IR spectroscopy, base hydrolysis, and crystallographic analysis. The combined results clearly indicate that the moderate-temperature ( approximately 400 degrees C) self-sustaining decomposition of trichloromelamine results in ring fragmentation and reorganization into a CN x H y product that contains predominantly larger heptazine-like structural building blocks. These results may have applicability to many other disordered carbon nitride materials that are formed via triazine thermolysis. It also provides clearer and more accurate structural guidance in the use of these carbon nitrides as photoactive materials or coordination supports for metal and nonmetal species.

9.
Inorg Chem ; 46(7): 2767-74, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-17338513

ABSTRACT

This report describes the rapid and slow thermal decomposition of an energetically unstable polycyclic and heterocyclic azide, triazido-s-heptazine (C6N16), to produce nitrogen-rich CNx materials (x > 1.2). An analysis of gaseous byproducts shows that this large heterocyclic precursor releases primarily N2 gas during its decomposition. The product composition and its morphology are dependent on the rapidity of the TAH decomposition. The CNx products are thermally stable to 500 degrees C and exhibit variations in H and O content dependent on precursor preparation and atmospheric exposure. The rapid decomposition of TAH leads to visibly porous powders, while slow decomposition yields smooth monoliths that are reminiscent of the morphology of the starting polycrystalline powder. IR and NMR spectral similarities between the amorphous CNx products and several previously reported heptazine molecules and extended heptazine networks supports significant retention of heptazine motif in these amorphous carbon nitride extended materials.

10.
Chem Commun (Camb) ; (48): 5988-90, 2005 Dec 28.
Article in English | MEDLINE | ID: mdl-16333503

ABSTRACT

The solid-state hydrolysis and air calcination of aluminum-doped TiCl3 leads to crystalline anatase TiO2 that is stable on heating to 1000 degrees C, in contrast to control studies with related AlCl3 and TiCl3 physical mixtures that produce rutile TiO2 under the same conditions.

11.
Inorg Chem ; 44(21): 7385-93, 2005 Oct 17.
Article in English | MEDLINE | ID: mdl-16212364

ABSTRACT

Nonaqueous solvothermal chemical reactions have found extensive utility in the growth of inorganic non-oxide materials. This report describes the successful use of organic solvothermal environments to synthesize energetically unstable copper azide precursors that are then decomposed in situ to crystalline metastable copper nitride at temperatures below 200 degrees C. A comparison of Cu3N products formed from nonpolar (toluene) and coordinating (THF) solvents is described. The cubic Cu3N products are nanocrystalline with aggregated particle-like extended structures and were characterized by X-ray diffraction, electron microscopy, IR spectroscopy, and mass spectrometry. The thermal stability and composition of Cu3N was examined by thermogravimetric analysis and bulk elemental analysis. The particle surfaces contain bound residual solvent species that can be removed by heating. The poorly coordinating solvent, toluene, lead to a more crystalline product containing less residual organic content. Benchtop reactions were performed to follow the temporal formation and decomposition of metal azide intermediates. These studies provided more detailed information on the progression of metal azide to metal nitride materials in a solvothermal environment.

12.
J Am Chem Soc ; 126(17): 5372-3, 2004 May 05.
Article in English | MEDLINE | ID: mdl-15113204

ABSTRACT

Derivatized s-triazine (C3N3) precursors have seen significant recent use in the production of carbon nitride materials. Larger polycyclic molecular precursors, such as those containing an s-heptazine core (C6N7 or tri-s-triazine), may improve stability and order in carbon nitride products. In this Communication, we describe the synthesis and crystal structure of 2,5,8-triazido-s-heptazine (2). Synthesis of 2 was achieved from melon, an oligomeric s-heptazine synthesized by the pyrolysis of NH4SCN. Melon was converted to molecular 2,5,8-trichloro-s-heptazine, which was then transformed to the triazide upon reaction with (CH3)3SiN3. The crystal structure of 2 verifies that the s-heptazine is planar and the azides adopt a pinwheel-like C3h arrangement around the periphery. The s-heptazine core shows pi delocalization in the C-N bonds around the periphery (av. 1.33 A), while the internal planar C-N bonds are longer (1.40 A). The heptazine units pack into parallel, but offset, layered sheets in the crystal. The triazide 2 exhibits photoluminescence at 430 nm and rapidly and exothermically decomposes upon heating at 185 degrees C to produce a tan thermally stable carbon nitride powder with a formula near C3N4.

13.
Chem Commun (Camb) ; (19): 2258-9, 2002 Oct 07.
Article in English | MEDLINE | ID: mdl-12398005

ABSTRACT

The thermal vapor transport of nitrogen-rich carbon nitride powders produces carbon nitride films on substrates that retain significant nitrogen content, have conjugated bond character, and show blue photoluminescent emission near 450 nm.

14.
Inorg Chem ; 41(11): 2920-6, 2002 Jun 03.
Article in English | MEDLINE | ID: mdl-12033900

ABSTRACT

The synthesis of [t-Bu(H)Ga(mu-NEt(2))](2) (1) was accomplished by the addition of 4 t-BuLi to [Cl(2)Ga(mu-NEt(2))](2). Evidence suggests that two tert-butyl groups are lost as isobutylene and result in Ga-H bond formation. The gallium hydride 1 is remarkably stable toward ambient air, oxygen, photolysis, and moderate heating; however, in CHCl(3) the hydride is replaced by chloride, producing [t-Bu(Cl)Ga(mu-NEt(2))](2) (2). Compound 1 may also be synthesized by sequential tert-butyl additions to [Cl(2)Ga(mu-NEt(2))](2). A singly substituted tert-butyl dimer, t-Bu(Cl)Ga(mu-NEt(2))(2)GaCl(2) (3), was also isolated, and interconversions between 1, 2, and 3 are described. Compound 1 was tested for utility in the chemical vapor deposition of GaN and produced gallium-rich films at low temperatures (<250 degrees C) with limited nitrogen incorporation due to facile Et(2)NH elimination.

SELECTION OF CITATIONS
SEARCH DETAIL
...