Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Commun Signal ; 17(3): 689-704, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36380131

ABSTRACT

Lipin-1 is a protein that plays a critical role in many cellular functions. At molecular level, it acts as a phosphatidic acid phosphohydrolase and a transcriptional coactivator. The functions of lipin-1 are largely dependent upon its subcellular localization, post-translational modifications like phosphorylation and acetylation, and also on its interaction with other proteins such as 14-3-3. However, the kinases and phosphatases that are responsible for these post translational modifications are not entirely known. Using bioinformatics and other biochemical approaches, we demonstrate lipin-1 as a novel target for AKT1 and LKB1. While AKT1 stabilizes lipin-1, LKB1 causes its degradation. Interestingly, our findings further show that lipin-1 enhances AKT1 activity as can be seen by increased phosphorylation of the substrates of AKT1. Taken together, our results suggest that lipin-1 plays an important role in the regulation of PI3K-AKT-mTOR pathway, which is dysregulated in majority of cancers. Therefore, understating the role of lipin-1 may provide new and important insights into the regulation and functions of the PI3K-mTOR pathway, which is one of the major targets for anti-cancer drug development strategies.

2.
J Cell Sci ; 135(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35044463

ABSTRACT

PCTAIRE1 (also known as CDK16) is a serine-threonine kinase implicated in physiological processes like neuronal development, vesicle trafficking, spermatogenesis and cell proliferation. However, its exact role in cell division remains unclear. In this study, using a library screening approach, we identified PCTAIRE1 among several candidates that resisted mitotic arrest and mitotic cell death induced by polyomavirus small T (PolST) expression in mammalian cells. Our study showed that PCTAIRE1 is a mitotic kinase that localizes at centrosomes during G2 and at spindle poles as the cells enter mitosis, and then at the midbody during cytokinesis. We also report that PCTAIRE1 protein levels fluctuate through the cell cycle and reach their peak at mitosis, during which there is an increase in PCTAIRE1 phosphorylation as well. Interestingly, knockdown of PCTAIRE1 resulted in aberrant mitosis by interfering with spindle assembly and chromosome segregation. Further, we found that PCTAIRE1 promotes resistance of cancer cells to antimitotic drugs, and this underscores the significance of PCTAIRE1 as a potential drug target for overcoming chemotherapeutic resistance. Taken together, these studies establish PCTAIRE1 as a critical mediator of mitotic progression and highlight its role in chemotherapeutic resistance. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Antimitotic Agents , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Chromosome Segregation , HeLa Cells , Humans , Male , Mitosis , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Spindle Apparatus/metabolism
3.
J Biol Chem ; 298(2): 101496, 2022 02.
Article in English | MEDLINE | ID: mdl-34921839

ABSTRACT

Deleted in Breast Cancer 1 (DBC1) is an important metabolic sensor. Previous studies have implicated DBC1 in various cellular functions, notably cell proliferation, apoptosis, histone modification, and adipogenesis. However, current reports about the role of DBC1 in tumorigenesis are controversial and designate DBC1 alternatively as a tumor suppressor or a tumor promoter. In the present study, we report that polyoma small T antigen (PyST) associates with DBC1 in mammalian cells, and this interaction leads to the posttranslational downregulation of DBC1 protein levels. When coexpressed, DBC1 overcomes PyST-induced mitotic arrest and promotes the exit of cells from mitosis. Using both transient and stable modes of PyST expression, we also show that cellular DBC1 is subjected to degradation by LKB1, a tumor suppressor and cellular energy sensor kinase, in an AMP kinase-independent manner. Moreover, LKB1 negatively regulates the phosphorylation as well as activity of the prosurvival kinase AKT1 through DBC1 and its downstream pseudokinase substrate, Tribbles 3 (TRB3). Using both transient transfection and stable cell line approaches as well as soft agar assay, we demonstrate that DBC1 has oncogenic potential. In conclusion, our study provides insight into a novel signaling axis that connects LKB1, DBC1, TRB3, and AKT1. We propose that the LKB1-DBC1-AKT1 signaling paradigm may have an important role in the regulation of cell cycle and apoptosis and consequently tumorigenesis.


Subject(s)
Adaptor Proteins, Signal Transducing , Antigens, Viral, Tumor , Cell Cycle Proteins , Nerve Tissue Proteins , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis , Carcinogenesis , Cell Cycle Proteins/metabolism , Down-Regulation , Humans , Nerve Tissue Proteins/metabolism , Sirtuin 1/metabolism
4.
Cell Signal ; 85: 110032, 2021 09.
Article in English | MEDLINE | ID: mdl-33932497

ABSTRACT

PCTAIRE1, also known as CDK16, is a cyclin-dependent kinase that is regulated by cyclin Y. It is a member of the serine-threonine family of kinases and its functions have primarily been implicated in cellular processes like vesicular transport, neuronal growth and development, myogenesis, spermatogenesis and cell proliferation. However, as extensive studies on PCTAIRE1 have not yet been conducted, the signaling pathways for this kinase involved in governing many cellular processes are yet to be elucidated in detail. Here, we report the association of PCTAIRE1 with important cellular proteins involved in major cell signaling pathways, especially cell proliferation. In particular, here we show that PCTAIRE1 interacts with AKT1, a key player of the PI3K signaling pathway that is responsible for promoting cell survival and proliferation. Our studies show that PCTAIRE1 is a substrate of AKT1 that gets stabilized by it. Further, we show that PCTAIRE1 also interacts with and is degraded by LKB1, a kinase that is known to suppress cellular proliferation and also regulate cellular energy metabolism. Moreover, our results show that PCTAIRE1 is also degraded by BRCA1, a well-known tumor suppressor. Together, our studies highlight the regulation of PCTAIRE1 by key players of the major cell signaling pathways involved in regulating cell proliferation, and therefore, provide crucial links that could be explored further to elucidate the mechanistic role of PCTAIRE1 in cell proliferation and tumorigenesis.


Subject(s)
Cyclin-Dependent Kinases , Phosphatidylinositol 3-Kinases , Cell Proliferation , Cyclin-Dependent Kinases/metabolism , Humans , Male , Muscle Development , Phosphatidylinositol 3-Kinases/metabolism , Protein Stability
5.
J Virol ; 94(14)2020 07 01.
Article in English | MEDLINE | ID: mdl-32404521

ABSTRACT

UNC5B is a dependence receptor that promotes survival in the presence of its ligand, netrin-1, while inducing cell death in its absence. The receptor has an important role in the development of the nervous and vascular systems. It is also involved in the normal turnover of intestinal epithelium. Netrin-1 and UNC5B are deregulated in multiple cancers, including colorectal, neuroblastoma, and breast tumors. However, the detailed mechanism of UNC5B function is not fully understood. We have utilized the murine polyomavirus small T antigen (PyST) as a tool to study UNC5B-mediated apoptosis. PyST is known to induce mitotic arrest followed by extensive cell death in mammalian cells. Our results show that the expression of PyST increases mRNA levels of UNC5B by approximately 3-fold in osteosarcoma cells (U2OS) and also stabilizes UNC5B at the posttranslational level. Furthermore, UNC5B is upregulated predominantly in those cells that undergo mitotic arrest upon PyST expression. Interestingly, although its expression was previously reported to be regulated by p53, our data show that the increase in UNC5B levels by PyST is p53 independent. The posttranslational stabilization of UNC5B by PyST is regulated by the interaction of PyST with PP2A. We also show that netrin-1 expression, which is known to inhibit UNC5B apoptotic activity, promotes survival of PyST-expressing cells. Our results thus suggest an important role of UNC5B in small-T antigen-induced mitotic catastrophe that also requires PP2A.IMPORTANCE UNC5B, PP2A, and netrin-1 are deregulated in a variety of cancers. UNC5B and PP2A are regarded as tumor suppressors, as they promote apoptosis and are deleted or mutated in many cancers. In contrast, netrin-1 promotes survival by inhibiting dependence receptors, including UNC5B, and is upregulated in many cancers. Here, we show that UNC5B-mediated apoptosis can occur independently of p53 but in a PP2A-dependent manner. A substantial percentage of cancers arise due to p53 mutations and are insensitive to chemotherapeutic treatments that activate p53. Unexpectedly, treatment of cancers having functional p53 with many conventional drugs leads to the upregulation of netrin-1 through activated p53, which is counterintuitive. Therefore, understanding the p53-independent mechanisms of the netrin-UNC5B axis, such as those involving PP2A, assumes greater clinical significance. Anticancer strategies utilizing anti-netrin-1 antibody treatment are already in clinical trials.


Subject(s)
Antigens, Viral, Tumor/metabolism , Apoptosis , Netrin Receptors/metabolism , Polyomavirus/metabolism , Protein Phosphatase 2/metabolism , A549 Cells , Animals , Antigens, Viral, Tumor/genetics , HeLa Cells , Humans , Mice , Netrin Receptors/genetics , Polyomavirus/genetics , Protein Phosphatase 2/genetics
6.
Mol Cell Biol ; 40(10)2020 04 28.
Article in English | MEDLINE | ID: mdl-32123010

ABSTRACT

Microtubule-associated serine/threonine kinase like (MASTL), also known as Greatwall (Gwl) kinase, has an important role in the regulation of mitosis. By inhibiting protein phosphatase 2A (PP2A), it plays a crucial role in activating one of the most important mitotic kinases, known as cyclin-dependent kinase 1 (CDK1). MASTL has been seen to be upregulated in various types of cancers and is also involved in tumor recurrence. It is activated by CDK1 through phosphorylations in the activation/T-loop, but the complete mechanism of its activation is still unclear. Here, we report that AKT phosphorylates MASTL at residue T299, which plays a critical role in its activation. Our results suggest that AKT increases CDK1-mediated phosphorylation and hence the activity of MASTL, which, in turn, promotes mitotic progression through PP2A inhibition. We also show that the oncogenic potential of AKT is augmented by MASTL activation, since AKT-mediated proliferation in colorectal cell lines can be attenuated by inhibiting and/or silencing MASTL. In brief, we report that AKT plays an important role in the progression of mitosis in mammalian cells and that it does so through the phosphorylation and activation of MASTL.


Subject(s)
Microtubule-Associated Proteins/metabolism , Mitosis , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Enzyme Activation , Humans , Neoplasms/metabolism , Phosphorylation
7.
Int J Biol Macromol ; 107(Pt B): 2279-2284, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29104053

ABSTRACT

Mammalian cells expressing murine polyoma small T antigen are known to undergo prolonged mitotic arrest followed by extensive cell death. However, the detailed mechanism of this process is not fully understood. While studying the mechanism related to small T induced mitotic arrest in mammalian cells, we observed that the expression of various cytoskeletal proteins was unusually altered in polyoma small T expressing cell line. Since most of the cytoskeletal proteins are reoriented during mitosis and are involved in spindle formation, so it was pertinent to investigate the expression of these genes in PyST expressing cell line. In this study, we evaluated the expression of tubulin, vinculin and actin. We report that polyoma small T antigen leads to upregulation of tubulin and vinculin in a time dependent manner with tubulin expression being most significantly affected. Intriguingly, we demonstrate that dividing cells normally change the expression of these proteins during mitotic progression. The alteration in cytoskeletal elements specifically occurs during mitosis as cells arrested in replicative phase did not show any change. Together these results reveal that the protein levels of tubulin and vinculin do not remain constant throughout cell cycle but change during mitosis and in polyoma small T expressing cells.


Subject(s)
Antigens, Viral, Tumor/genetics , Polyomavirus/genetics , Tubulin/genetics , Vinculin/genetics , Actins/genetics , Animals , Cell Death/genetics , Cytoskeletal Proteins/genetics , Gene Expression Regulation/genetics , Humans , Mice , Mitosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...