Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(15): e17449, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38967124

ABSTRACT

A refugial population of the endangered delta smelt (Hypomesus transpacificus) has been maintained at the Fish Conservation and Culture Laboratory (FCCL) at UC Davis since 2008. Despite intense genetic management, fitness differences between wild and cultured fish have been observed at the FCCL. To investigate the molecular underpinnings of hatchery domestication, we used whole-genome bisulfite sequencing to quantify epigenetic differences between wild and hatchery-origin delta smelt. Differentially methylated regions (DMRs) were identified from 104 individuals by comparing the methylation patterns in different generations of hatchery fish (G1, G2, G3) with their wild parents (G0). We discovered a total of 132 significant DMRs (p < .05) between G0 and G1, 132 significant DMRs between G0 and G2, and 201 significant DMRs between G0 and G3. Our results demonstrate substantial differences in methylation patterns emerged between the wild and hatchery-reared fish in the early generations in the hatchery, with a higher proportion of hypermethylated DMRs in hatchery-reared fish. The rearing environment was found to be a stronger predictor of individual clustering based on methylation patterns than family, sex or generation. Our study indicates a reinforcement of the epigenetic status with successive generations in the hatchery environment, as evidenced by an increase in methylation in hypermethylated DMRs and a decrease in methylation in hypomethylated DMRs over time. Lastly, our results demonstrated heterogeneity in inherited methylation pattern in families across generations. These insights highlight the long-term consequences of hatchery practices on the epigenetic landscape, potentially impacting wild fish populations.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Osmeriformes , Animals , Osmeriformes/genetics , Male , Female , Conservation of Natural Resources , Endangered Species
2.
PLoS One ; 18(5): e0286027, 2023.
Article in English | MEDLINE | ID: mdl-37235546

ABSTRACT

Conservation of endangered fishes commonly includes captive breeding, applied research, and management. Since 1996, a captive breeding program has existed for the federally threatened and California endangered Delta Smelt Hypomesus transpacificus, an osmerid fish endemic to the upper San Francisco Estuary. Although this program serves as a captive refuge population, with experimental releases being initiated to supplement the wild population, it was uncertain how individuals would survive, feed, and maintain condition outside hatchery conditions. We evaluated this and the effects of three enclosure designs (41% open, 63% open, and 63% open with partial outer mesh wrap) on growth, survival, and feeding efficacy of cultured Delta Smelt at two locations (Sacramento River near Rio Vista, CA and in Sacramento River Deepwater Ship Channel) in the wild. Enclosures exposed fish to semi-natural conditions (ambient environmental fluctuations and wild food resources) but prevented escape and predation. After four weeks, survival was high for all enclosure types (94-100%) at both locations. The change in condition and weight was variable between sites, increasing at the first location but decreasing at the second location. Gut content analysis showed that fish consumed wild zooplankton that came into the enclosures. Cumulatively, results show that captive-reared Delta Smelt can survive and forage successfully when housed in enclosures under semi-natural conditions in the wild. When comparing enclosure types, we observed no significant difference in fish weight changes (p = 0.58-0.81 across sites). The success of housing captive-reared Delta Smelt in enclosures in the wild provides preliminary evidence that these fish may be suitable to supplement the wild population in the San Francisco Estuary. Furthermore, these enclosures are a new tool to test the efficacy of habitat management actions or to acclimate fish to wild conditions as a soft release strategy for recently initiated supplementation efforts.


Subject(s)
Endangered Species , Osmeriformes , Animals , Ecosystem , Rivers , San Francisco
3.
Cell Transplant ; 25(1): 17-33, 2016.
Article in English | MEDLINE | ID: mdl-25812169

ABSTRACT

Severe neutropenia induced by chemotherapy or conditioning for hematopoietic cell transplantation often results in morbidity and mortality due to infection by opportunistic pathogens. A system has been developed to generate ex vivo-expanded mouse myeloid progenitor cells (mMPCs) that produce functional neutrophils in vivo upon transplantation in a pathogen challenge model. It has previously been demonstrated that transplantation of large numbers of freshly isolated myeloid progenitors from a single donor provides survival benefit in radiation-induced neutropenic mice. In the present work, an ex vivo-expanded and cryopreserved mMPC product generated from an allogeneic donor pool retains protective activity in vivo in a lethal fungal infection model. Infusion of the allogeneic pooled mMPC product is effective in preventing death from invasive Aspergillus fumigatus in neutropenic animals, and protection is dose dependent. Cell progeny from the mMPC product is detected in the bone marrow, spleen, blood, and liver by flow cytometry 1 week postinfusion but is no longer evident in most animals 4 weeks posttransplant. In this model, the ex vivo-generated pooled allogeneic mMPC product (i) expands and differentiates in vivo; (ii) is functional and prevents death from invasive fungal infection; and (iii) does not permanently engraft or cause allosensitization. These data suggest that an analogous ex vivo-expanded human myeloid progenitor cell product may be an effective off-the-shelf bridging therapy for the infectious complications that develop during hematopoietic recovery following hematopoietic cell transplantation or intensive chemotherapy.


Subject(s)
Aspergillosis/complications , Aspergillosis/prevention & control , Cryopreservation , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/transplantation , Neutropenia/complications , Neutropenia/pathology , Animals , Aspergillosis/immunology , Aspergillosis/microbiology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dose-Response Relationship, Immunologic , Immunization , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype , Transplantation, Homologous
4.
J Mammal ; 97(3): 823-838, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-29899578

ABSTRACT

Fossil data are ambiguous regarding the evolutionary origin of contemporary desert bighorn sheep ( Ovis canadensis subspecies). To address this uncertainty, we conducted phylogeographic and population genetic analyses on bighorn sheep subspecies found in southwestern North America. We analyzed 515 base pairs of mtDNA control region sequence and 39 microsatellites in 804 individuals from 58 locations. Phylogenetic analyses revealed 2 highly divergent clades concordant with Sierra Nevada ( O. c. sierrae ) and Rocky Mountain ( O. c. canadensis ) bighorn and showed that these 2 subspecies both diverged from desert bighorn prior to or during the Illinoian glaciation (~315-94 thousand years ago [kya]). Desert bighorn comprised several more recently diverged haplogroups concordant with the putative Nelson ( O. c. nelsoni ), Mexican ( O. c. mexicana ), and Peninsular ( O. c. cremnobates ) subspecies. Corresponding estimates of effective splitting times (~17-3 kya), and haplogroup ages (~85-72 kya) placed the most likely timeframe for divergence among desert bighorn subspecies somewhere within the last glacial maximum. Median-joining haplotype network and Bayesian skyline analyses both indicated that desert bighorn collectively comprised a historically large and haplotype-diverse population, which subsequently lost much of its diversity through demographic decline. Using microsatellite data, discriminant analysis of principle components (DAPC) and Bayesian clustering analyses both indicated genetic structure concordant with the geographic distribution of 3 desert subspecies. Likewise, microsatellite and mitochondrial-based FST comparisons revealed significant fixation indices among the desert bighorn genetic clusters. We conclude these desert subspecies represent ancient lineages likely descended from separate Pleistocene refugial populations and should therefore be managed as distinct taxa to preserve maximal biodiversity. Los datos de fósiles sobre el origen evolutivo de las ovejas del desierto ( Ovis canadensis subespecies) contemporáneas son ambiguos. Para dilucidar esta incertidumbre, llevamos a cabo análisis filogeográficos y de genética de poblaciones entre cinco subespecies de ovejas del suroccidente de Norteamérica. Analizamos 515 pb de secuencia de la región control del ADN mitocondrial y 39 microsatélites en 804 ovejas de 58 localidades. Los análisis filogenéticos revelaron 2 clados altamente divergentes concordantes con ovejas de la Sierra Nevada ( O. c. sierrae ) y de las Montañas Rocosas ( O. c. canadensis ), y demostraron que estas dos subespecies divergieron antes o durante la glaciación de Illinois (315,000-94,000 años). Las ovejas del desierto formaron varios haplogrupos recientemente derivados concordantes con las subespecies de Nelson ( O. c. nelsoni ), México ( O. c. mexicana ) y peninsular ( O. c. cremnobates ). Las estimaciones correspondientes al tiempo de separación efectiva (17,000-3,000 años) y edades de haplogrupos (85,000-72,000 años) son los plazos más probables para las divergencias entre subespecies de ovejas del desierto dentro de la última glaciación máxima. Análisis de redes de haplotipos de unión de medias y análisis bayesianos de líneas de horizonte indicaron que las ovejas del desierto formaron una población históricamente grande y diversa en términos de haplotipos, que luego perdieron gran parte de su diversidad a través de un descenso demográfico. Utilizando datos de microsatélites los análisis DAPC y TESS indicaron agrupamiento genético concordante con la distribución geográfica actual de las tres subespecies. Asimismo, comparaciones de FST con datos de microsatélites y mitocondriales revelaron índices de fijación significativos entre los grupos genéticos de ovejas del desierto. Concluimos que estas subespecies de ovejas del desierto representan linajes antiguos que probablemente descienden de poblaciones de distintos refugios del Pleistoceno, y que por lo tanto deben ser manejadas como taxones distintos para preservar su biodiversidad máxima.

5.
Radiat Res ; 177(6): 781-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22559205

ABSTRACT

The aim of this study was to elucidate the potential of mouse myeloid progenitor cells (mMPC) to mitigate lethal doses of (60)Co γ radiation and X rays in various strains of mice. Different cell doses of pooled allogeneic mMPC generated ex vivo from AKR, C57Bl/6, and FVB mice were transfused intravenously into haplotype-mismatched recipient Balb/c or CD2F1 mice at various times after irradiation to assess their effect on 30-day survival. Our results show that cryopreserved allogeneic mMPC significantly improve survival in both strains of mice irradiated with lethal doses of (60)Co γ radiation (CD2F1, 9.2 Gy) and X-ray exposures (Balb/c, 9 Gy) that are known to cause acute radiation syndrome in hematopoietic tissues. Survival benefit was mMPC-dose dependent and significant even when mMPC administration was delayed up to 7 days after irradiation. We further show that mMPC administration mitigates death from acute radiation syndrome at radiation doses of up to 15 Gy ((60)Co γ radiation, CD2F1), which are radiation exposure levels that cause mice to succumb to multi-organ failure, and determined that the dose-reduction factor of 5 million mMPC administered 24 h after irradiation of CD2F1 mice is 1.73. Even at high doses of up to 14 Gy (60)Co γ radiation, mMPC administration could be delayed up to 5 days in CD2F1 mice and still provide significant benefit to 30-day survival. These results demonstrate that mMPC are a promising radiation countermeasure with the potential to mitigate radiation injury in unmatched recipients across a broad range of lethal radiation doses, even when administration is delayed days after radiation exposure. With respect to efficacy, timing, and practicality of administration, mMPC appear to be a very promising radiation countermeasure for acute radiation syndrome among all candidate therapeutics currently under development.


Subject(s)
Acute Radiation Syndrome/therapy , Cell- and Tissue-Based Therapy/methods , Myeloid Progenitor Cells/metabolism , Acute Radiation Syndrome/metabolism , Acute Radiation Syndrome/pathology , Animals , Cells, Cultured , Cryopreservation , Cytokines/metabolism , Gamma Rays/adverse effects , Male , Mice , Myeloid Progenitor Cells/cytology , Radiation Dosage , Species Specificity , Survival Analysis , Time Factors , X-Rays/adverse effects
6.
Blood ; 110(4): 1370-8, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17435112

ABSTRACT

Patients with severe systemic lupus erythematosus (SLE) refractory to conventional treatment are candidates for autologous hematopoietic stem cell (HSC) transplantation if the intent is to reset the immunologic clock. These patients might be candidates for allotransplantation with (SLE)-resistant major histocompatibility complex (MHC) haplotype-matched HSC if partial or complete replacement of an autoimmune-prone system is the intent. Using lupus-prone New Zealand black x New Zealand white (NZBW) mice, we investigated the use of highly enriched, haplomismatched, allogeneic HSC to prevent development of or to treat established autoimmune pathology. Young NZBW mice receiving purified allogeneic HSC transplants had improved survival, decreased proteinuria, circulating immune complexes, and autoantibodies to nuclear antigens than did untreated mice or mice given NZBW HSCs. NZBW mice with established lupus-like disease that received nonmyeloablative conditioning and transplants of (MHC) haplomismatched allogeneic HSCs also had greatly increased overall survival. Mice that received transplants exhibited stabilization or reversal of their lupus symptoms; stabilized or decreased proteinuria, and a lower frequency of elevated circulating immune complexes or autoantibodies than did control mice. Induction of durable mixed chimerism by transplantation of purified allogeneic HSCs after nonmyeloablative conditioning has the potential to reverse symptoms of established NZBW lupus.


Subject(s)
Autoimmune Diseases/prevention & control , Hematopoietic Stem Cell Transplantation , Immune Tolerance/immunology , Lupus Erythematosus, Systemic/immunology , Transplantation, Homologous , Animals , Autoimmune Diseases/immunology , Autoimmunity/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Female , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Lupus Erythematosus, Systemic/pathology , Mice , Mice, Inbred NZB , New Zealand , Thymus Gland/immunology , Thymus Gland/metabolism , Thymus Gland/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...