Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2309-2318, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170673

ABSTRACT

Dendritic copper offers a highly effective method for synthesizing porous copper anodes due to its intricate branching structure. This morphology results in an elevated surface area-to-volume ratio, facilitating shortened electron pathways during aqueous and electrolyte permeation. Here, we demonstrate a procedure for a time- and cost-efficient synthesis routine of fern-like copper microstructures as a host for polymer-templated Si/Ge/C thin films. Dissolvable Zintl clusters and sol-gel chemistry are used to synthesize nanoporous coating as the anode. Cyclic voltammetry (CV) with KOH as the electrolyte is used to estimate the surface area increase in the dendritic copper current collectors (CCs). Half cells are assembled and tested with battery-related techniques such as CV, galvanostatic cycling, and electrochemical impedance spectroscopy, showing a capacity increase in the dendritic copper cells. Energy-dispersive X-ray spectroscopy is used to estimate the removal of K in the bulk after oxidizing the Zintl phase K12Si8Ge9 in the polymer/precursor blend with SiCl4. Furthermore, scanning electron microscopy images are provided to depict the thin films after synthesis and track the degradation of the half cells after cycling, revealing that the morphological degradation through alloying/dealloying is reduced for the dendritic Cu CC anodes as compared with the bare reference. Finally, we highlight this time- and cost-efficient routine for synthesizing this capacity-boosting material for low-mobility and high-capacity anode coatings.

2.
J Am Chem Soc ; 145(8): 4450-4461, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36799625

ABSTRACT

High voltage spinel is one of the most promising next-generation cobalt-free cathode materials for lithium ion battery applications. Besides the typically utilized compositional range of LixNi0.5Mn1.5O4 0 < x < 1 in the voltage window of 4.90-3.00 V, additional 1.5 mol of Li per formula unit can be introduced into the structure, in an extended voltage range to 1.50 V. Theoretically, this leads to significant increase of the specific energy from 690 to 1190 Wh/kg. However, utilization of the extended potential window leads to rapid capacity fading and voltage polarization that lack a comprehensive explanation. In this work, we conducted potentiostatic entropymetry, operando XRD and neutron diffraction on the ordered stoichiometric spinel LixNi0.5Mn1.5O4 within 0 < x < 2.5 in order to understand the dynamic structure evolution and correlate it with the voltage profile. During the two-phase reaction from cubic (x < 1) to tetragonal (x > 1) phase at ∼2.8 V, we identified the evolution of a second tetragonal phase with x > 2. The structural evaluation during the delithiation indicates the formation of an intermediate phase with cubic symmetry at a lithium content of x = 1.5. Evaluation of neutron diffraction data, with maximum entropy method, of the highly lithiated phase LixNi0.5Mn1.5O4 with 2 < x < 2.5 strongly suggests that lithium ions are located on octahedral 8a and tetrahedral 4a positions of the distorted tetragonal phase I41amd. Consequently, we were able to provide a conclusive explanation for the additional voltage step at 2.10 V, the sloping voltage profile below 1.80 V, and the additional voltage step at ∼3.80 V.

3.
J Appl Crystallogr ; 53(Pt 1): 210-221, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32047412

ABSTRACT

Small-angle neutron scattering (SANS) was recently applied to the in situ and operando study of the charge/discharge process in Li-ion battery full-cells based on a pouch cell design. Here, this work is continued in a half-cell with a graphite electrode cycled versus a metallic lithium counter electrode, in a study conducted on the SANS-1 instrument of the neutron source FRM II at the Heinz Maier-Leibnitz Zentrum in Garching, Germany. It is confirmed that the SANS integrated intensity signal varies as a function of graphite lithiation, and this variation can be explained by changes in the squared difference in scattering length density between graphite and the electrolyte. The scattering contrast change upon graphite lithiation/delithiation calculated from a multi-phase neutron scattering model is in good agreement with the experimentally measured values. Due to the finite coherence length, the observed SANS contrast, which mostly stems from scattering between the (lithiated) graphite and the electrolyte phase, contains local information on the mesoscopic scale, which allows the development of lithiated phases in the graphite to be followed. The shape of the SANS signal curve can be explained by a core-shell model with step-wise (de)lithiation from the surface. Here, for the first time, X-ray diffraction, SANS and theory are combined to give a full picture of graphite lithiation in a half-cell. The goal of this contribution is to confirm the correlation between the integrated SANS data obtained during operando measurements of an Li-ion half-cell and the electrochemical processes of lithiation/delithiation in micro-scaled graphite particles. For a deeper understanding of this correlation, modelling and experimental data for SANS and results from X-ray diffraction were taken into account.

4.
ChemSusChem ; 13(3): 529-538, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31738480

ABSTRACT

The addition of Si compounds to graphite anodes has become an attractive way of increasing the practical specific energies in Li-ion cells. Previous studies involving Si/C anodes lacked direct insight into the processes occurring in full cells during low-temperature operation. In this study, a powerful combination of operando neutron diffraction, electrochemical tests, and post-mortem analysis is used for the investigation of Li-ion cells. 18650-type cylindrical cells in two different aging states are investigated by operando neutron diffraction. The experiments reveal deep insights and important trends in low-temperature charging mechanisms involving intercalation, alloying, Li metal deposition, and relaxation processes as a function of charging C-rates and temperatures. Additionally, the main aging mechanism caused by long-term cycling and interesting synergistic effects of Si and graphite are elucidated.

5.
J Chem Theory Comput ; 15(8): 4687-4698, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31251056

ABSTRACT

Small-angle X-ray and small-angle neutron scattering (SAXS/SANS) provide unique structural information on biomolecules and their complexes in solution. SANS may provide multiple independent data sets by means of contrast variation experiments, that is, by measuring at different D2O concentrations and different perdeuteration conditions of the biomolecular complex. However, even the combined data from multiple SAXS/SANS sets is by far insufficient to define all degrees of freedom of a complex, leading to a significant risk of overfitting when refining biomolecular structures against SAXS/SANS data. Hence, to control against overfitting, the low-information SAXS/SANS data must be complemented by accurate physical models, and, if possible, refined models should be cross-validated against independent data not used during the refinement. We present a method for refining atomic biomolecular structures against multiple sets of SAXS and SANS data using all-atom molecular dynamics simulations. Using the protein citrate synthase and the protein/RNA complex Sxl-Unr-msl2 mRNA as test cases, we demonstrate how multiple SAXS and SANS sets may be used for refinement and cross-validation, thereby excluding overfitting during refinement. For the Sxl-Unr-msl2 complex, we find that perdeuteration of the Unr domain leads to a unique, slightly compacted conformation, whereas other perdeuteration conditions lead to similar solution conformations compared to the nondeuterated state. In line with our previous method for predicting SAXS curves, SANS curves were predicted with explicit-solvent calculations, taking atomic models for both the hydration layer and the excluded solvent into account, thereby avoiding the use of solvent-related fitting parameters and solvent-reduced neutron scattering lengths. We expect the method to be useful for deriving and validating solution structures of biomolecules and soft-matter complexes, and for critically assessing whether multiple SAXS and SANS sets are mutually compatible.


Subject(s)
Molecular Dynamics Simulation , Neutron Diffraction , Scattering, Small Angle , X-Ray Diffraction , Animals , Citrate (si)-Synthase/chemistry , DNA-Binding Proteins/chemistry , Drosophila , Drosophila Proteins/chemistry , Neutron Diffraction/methods , RNA/chemistry , RNA-Binding Proteins/chemistry , Swine , X-Ray Diffraction/methods
6.
J Appl Crystallogr ; 50(Pt 5): 1382-1394, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29021734

ABSTRACT

An improved data-reduction procedure is proposed and demonstrated for small-angle neutron scattering (SANS) measurements. Its main feature is the correction of geometry- and wavelength-dependent intensity variations on the detector in a separate step from the different pixel sensitivities: the geometric and wavelength effects can be corrected analytically, while pixel sensitivities have to be calibrated to a reference measurement. The geometric effects are treated for position-sensitive 3He proportional counter tubes, where they are anisotropic owing to the cylindrical geometry of the gas tubes. For the calibration of pixel sensitivities, a procedure is developed that is valid for isotropic and anisotropic signals. The proposed procedure can save a significant amount of beamtime which has hitherto been used for calibration measurements.

7.
J Colloid Interface Sci ; 504: 356-362, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28582753

ABSTRACT

ZnO nanoparticles (NPs) are highly relevant for various industrial applications, however, after synthesis of the NPs residual chemicals need to be removed from the colloidal raw product by washing, as they may influence the performance of the final device. In the present study we focus on the effect of washing by antisolvent flocculation with subsequent redispersion of the NPs on the stabilizing acetate shell. Purification of the ZnO nanoparticles is reported to be optimal with respect to zeta potential that has a maximum after one washing cycle. In this work, we will shed light on this observation using small angle X-ray and neutron scattering (SAXS, SANS) by demonstrating that after the first washing cycle the content of acetate in the ligand shell around the ZnO NPs increases. In detail, it was observed that the diffuse acetate shell shrinks to the size of a monolayer upon washing but the acetate content of this monolayer is higher than within the diffuse shell of the particles of the native dispersion. A second washing cycle reduces the acetate concentration within the stabilizing shell and the stability of the dispersion drops accordingly. After another (third) washing cycle strong agglomeration was observed for all investigated samples.

8.
J Phys Chem B ; 118(29): 8808-18, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-24950992

ABSTRACT

Aqueous suspensions of platelet-like shaped tripalmitin nanocrystals are studied here at high tripalmitin concentrations (10 wt % tripalmitin) for the first time by a combination of small-angle X-ray and neutron scattering (SAXS and SANS). The suspensions are stabilized by different lecithins, namely, DLPC, DOPC, and the lecithin blend S100. At such high concentrations the platelets start to self-assemble in stacks, which causes interference maxima at low Q-values in the SAXS and SANS patterns, respectively. It is found that the stack-related interference maxima are more pronounced for the suspension stabilized with DOPC and in particular DLPC, compared to suspensions stabilized by S100. By use of the X-ray and neutron powder pattern simulation analysis (XNPPSA), the SAXS and SANS patterns of the native tripalmitin suspensions could only be reproduced simultaneously when assuming the presence of both isolated nanocrystals and stacks of nanocrystals of different size in the simulation model of the dispersions. By a fit of the simulated SAXS and SANS patterns to the experimental data, a distribution of the stack sizes and their volume fractions is determined. The volume fraction of stacklike platelet assemblies is found to rise from 70% for S100-stabilized suspensions to almost 100% for the DLPC-stabilized suspensions. The distribution of the platelet thicknesses could be determined with molecular resolution from a combined analysis of the SAXS and SANS patterns of the corresponding diluted tripalmitin (3 wt %) suspensions. In accordance with microcalorimetric data, it could be concluded that the platelets in the suspensions stabilized with DOPC, and in particular DLPC, are significantly thinner than those stabilized with S100. The DLPC-stabilized suspensions exhibit a significantly narrower platelet thickness distribution compared to DOPC- and S100-stabilized suspensions. The smaller thicknesses for the DLPC- and DOPC-stabilized platelets explain their higher tendency to self-assemble in stacks. The finding that the nanoparticles of the suspension stabilized by the saturated lecithin DLPC crystallize in the stable ß-tripalmitin modification with its characteristic platelet-like shape is surprising and can be explained by the fact that the main phase transformation temperature for DLPC is, as for unsaturated lecithins like DOPC and S100, well below the crystallization temperature of the supercooled tripalmitin emulsion droplets.


Subject(s)
Models, Molecular , Nanoparticles/chemistry , Neutron Diffraction , Scattering, Small Angle , Triglycerides/chemistry , X-Ray Diffraction , Freezing , Molecular Conformation , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...