Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Astron (Dordr) ; 51(1): 77-94, 2021.
Article in English | MEDLINE | ID: mdl-33603279

ABSTRACT

The data throughput of massive spectroscopic surveys in the course of each observation is directly coordinated with the number of optical fibers which reach their target. In this paper, we evaluate the safety and the performance of the astrobots coordination in SDSS-V by conducting various experimental and simulated tests. We illustrate that our strategy provides a complete coordination condition which depends on the operational characteristics of astrobots, their configurations, and their targets. Namely, a coordination method based on the notion of cooperative artificial potential fields is used to generate safe and complete trajectories for astrobots. Optimal target assignment further improves the performance of the used algorithm in terms of faster convergences and less oscillatory movements. Both random targets and galaxy catalog targets are employed to observe the coordination success of the algorithm in various target distributions. The proposed method is capable of handling all potential collisions in the course of coordination. Once the completeness condition is fulfilled according to initial configuration of astrobots and their targets, the algorithm reaches full convergence of astrobots. Should one assign targets to astrobots using efficient strategies, convergence time as well as the number of oscillations decrease in the course of coordination. Rare incomplete scenarios are simply resolved by trivial modifications of astrobots swarms' parameters.

2.
Educ Technol Res Dev ; 69(2): 417-444, 2021.
Article in English | MEDLINE | ID: mdl-33456285

ABSTRACT

Designing and implementing online or digital learning material is a demanding task for teachers. This is even more the case when this material is used for more engaged forms of learning, such as inquiry learning. In this article, we give an informed account of Go-Lab, an ecosystem that supports teachers in creating Inquiry Learning Spaces (ILSs). These ILSs are built around STEM-related online laboratories. Within the Go-Lab ecosystem, teachers can combine these online laboratories with multimedia material and learning apps, which are small applications that support learners in their inquiry learning process. The Go-Lab ecosystem offers teachers ready-made structures, such as a standard inquiry cycle, alternative scenarios or complete ILSs that can be used as they are, but it also allows teachers to configure these structures to create personalized ILSs. For this article, we analyzed data on the design process and structure of 2414 ILSs that were (co)created by teachers and that our usage data suggest have been used in classrooms. Our data show that teachers prefer to start their design from empty templates instead of more domain-related elements, that the makeup of the design team (a single teacher, a group of collaborating teachers, or a mix of teachers and project members) influences key design process characteristics such as time spent designing the ILS and number of actions involved, that the characteristics of the resulting ILSs also depend on the type of design team and that ILSs that are openly shared (i.e., published in a public repository) have different characteristics than those that are kept private.

3.
Comput Methods Programs Biomed ; 118(2): 107-23, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25577673

ABSTRACT

In this paper, the problem of predicting blood glucose concentrations (BG) for the treatment of patients with type 1 diabetes, is addressed. Predicting BG is of very high importance as most treatments, which consist in exogenous insulin injections, rely on the availability of BG predictions. Many models that can be used for predicting BG are available in the literature. However, it is widely admitted that it is almost impossible to perfectly model blood glucose dynamics while still being able to identify model parameters using only blood glucose measurements. The main contribution of this work is to propose a simple and identifiable linear dynamical model, which is based on the static prediction model of standard therapy. It is shown that the model parameters are intrinsically correlated with physician-set therapy parameters and that the reduction of the number of model parameters to identify leads to inferior data fits but to equivalent or slightly improved prediction capabilities compared to state-of-the-art models: a sign of an appropriate model structure and superior reliability. The validation of the proposed dynamic model is performed using data from the UVa simulator and real clinical data, and potential uses of the proposed model for state estimation and BG control are discussed.


Subject(s)
Blood Glucose/analysis , Diabetes Mellitus, Type 1/blood , Models, Theoretical , Diabetes Mellitus, Type 1/drug therapy , Humans , Insulin/therapeutic use
4.
Med Eng Phys ; 32(9): 1050-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20709589

ABSTRACT

The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.


Subject(s)
Models, Anatomic , Musculoskeletal System/anatomy & histology , Shoulder/anatomy & histology , Biomechanical Phenomena , Feasibility Studies , Humeral Head/anatomy & histology , Humeral Head/physiology , Kinetics , Movement , Robotics , Rotation , Shoulder/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...