Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JAMA Ophthalmol ; 132(12): 1393-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25124931

ABSTRACT

IMPORTANCE: Retinal detachment with avascularity of the peripheral retina, typically associated with familial exudative vitreoretinopathy (FEVR), can result from mutations in KIF11, a gene recently identified to cause microcephaly, lymphedema, and chorioretinal dysplasia (MLCRD) as well as chorioretinal dysplasia, microcephaly, and mental retardation (CDMMR). Ophthalmologists should be aware of the range of presentations for mutations in KIF11 because the phenotypic distinction between FEVR and MLCRD/CDMMR portends management implications in patients with these conditions. OBJECTIVE: To identify gene mutations in patients who present with a FEVR phenotype and explore the spectrum of ocular and systemic abnormalities caused by KIF11 mutations in a cohort of patients with FEVR or microcephaly in conjunction with chorioretinopathy or FEVR. DESIGN, SETTING, AND PARTICIPANTS: Clinical data and DNA were collected from each participant between 1998 and 2013 from the clinical practices of ophthalmologists and clinical geneticists internationally. Twenty-eight FEVR probands with diagnoses made by the referring physician and without a known FEVR gene mutation, and 3 with microcephaly and chorioretinopathy, were included. At least 1 patient in each pedigree manifested 1 or more of the following: macular dragging, partial retinal detachment, falciform folds, or total retinal detachment. EXPOSURES: Whole-exome sequencing was conducted on affected members in multiplex pedigrees, and Sanger sequencing of the 22 exons of the KIF11 gene was performed on singletons. Clinical data and history were collected and reviewed. MAIN OUTCOMES AND MEASURES: Identification of mutations in KIF11. RESULTS: Four novel heterozygous KIF11 mutations and 1 previously published mutation were identified in probands with FEVR: p.A218Gfs*15, p.E470X, p.R221G, c.790-1G>T, and the previously described heterozygous p.R47X. Documentation of peripheral avascular areas on intravenous fluorescein angiography was possible in 2 probands with fibrovascular proliferation demonstrating phenotypic overlap with FEVR. CONCLUSIONS AND RELEVANCE: Mutations in KIF11 cause a broader spectrum of ocular disease than previously reported, including retinal detachment. The KIF11 gene likely plays a role in retinal vascular development and mutations in this gene can lead to clinical overlap with FEVR. Cases of FEVR should be carefully inspected for the presence of microcephaly as a marker for KIF11-related disease to enhance the accuracy of the prognosis and genetic counseling.


Subject(s)
Kinesins/genetics , Lymphedema/genetics , Microcephaly/genetics , Mutation , Retinal Dysplasia/genetics , Base Sequence , Child , Child, Preschool , DNA Mutational Analysis , Electrophysiology , Exons/genetics , Eye Diseases, Hereditary , Facies , Familial Exudative Vitreoretinopathies , Female , Fluorescein Angiography , Humans , Lymphedema/diagnosis , Male , Microcephaly/diagnosis , Molecular Sequence Data , Pedigree , Phenotype , Polymerase Chain Reaction , Retinal Diseases/diagnosis , Retinal Diseases/genetics , Retinal Dysplasia/diagnosis
2.
J Hered ; 105(2): 188-202, 2014.
Article in English | MEDLINE | ID: mdl-24381183

ABSTRACT

North Atlantic right whales have one of the lowest levels of genetic variation at minisatellite loci, microsatellite loci, and mitochondrial control region haplotypes among mammals. Here, adaptive variation at the peptide binding region of class I and class II DRB-like genes of the major histocompatibility complex was assessed. Amplification of a duplicated region in 222 individuals revealed at least 11 class II alleles. Six alleles were assigned to the locus Eugl-DRB1 and 5 alleles were assigned to the locus Eugl-DRB2 by assessing segregation patterns of alleles from 81 parent/offspring pedigrees. Pedigree analysis indicated that these alleles segregated into 12 distinct haplotypes. Genotyping a smaller subset of unrelated individuals (n = 5 and 10, respectively) using different primer sets revealed at least 2 class II pseudogenes (with ≥ 4 alleles) and at least 3 class I loci (with ≥ 6 alleles). Class II sequences were significantly different from neutrality at peptide binding sites suggesting loci may be under the influence of balancing selection. Trans-species sharing of alleles was apparent for class I and class II sequences. Characterization of class II loci represents the first step in determining the relationship between major histocompatibility complex variability and factors affecting health and reproduction in this species.


Subject(s)
Genes, MHC Class II/genetics , Genes, MHC Class I/genetics , Genetic Loci , Pedigree , Whales/genetics , Alleles , Amino Acid Sequence , Animals , Female , Genetic Variation , Haplotypes , Male , Microsatellite Repeats , Molecular Sequence Data , Phylogeny , Selection, Genetic
3.
Hum Genet ; 132(11): 1223-34, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23793442

ABSTRACT

Pediatric intracranial calcification may be caused by inherited or acquired factors. We describe the identification of a novel rearrangement in which a downstream pseudogene translocates into exon 9 of OCLN, resulting in band-like brain calcification and advanced chronic kidney disease in early childhood. SNP genotyping and read-depth variation from whole exome sequencing initially pointed to a mutation in the OCLN gene. The high degree of identity between OCLN and two pseudogenes required a combination of multiplex ligation-dependent probe amplification, PCR, and Sanger sequencing to identify the genomic rearrangement that was the underlying genetic cause of the disease. Mutations in exon 3, or at the 5-6 intron splice site, of OCLN have been reported to cause brain calcification and polymicrogyria with no evidence of extra-cranial phenotypes. Of the OCLN splice variants described, all make use of exon 9, while OCLN variants that use exons 3, 5, and 6 are tissue specific. The genetic rearrangement we identified in exon 9 provides a plausible explanation for the expanded clinical phenotype observed in our individuals. Furthermore, the lack of polymicrogyria associated with the rearrangement of OCLN in our patients extends the range of cranial defects that can be observed due to OCLN mutations.


Subject(s)
Brain/physiopathology , Calcinosis/physiopathology , Gene Rearrangement , Kidney/physiopathology , Occludin/genetics , Canada , Child, Preschool , Chromosome Mapping , DNA Copy Number Variations , Exome , Exons , Female , Gene Deletion , Genotype , Homozygote , Humans , Introns , Malformations of Cortical Development/genetics , Multiplex Polymerase Chain Reaction , Mutation , Occludin/metabolism , Pedigree , Phenotype , Polymorphism, Single Nucleotide , RNA Splicing , Sequence Analysis, DNA
4.
Mol Ecol Resour ; 13(1): 103-16, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23095905

ABSTRACT

Characterization and population genetic analysis of multilocus genes, such as those found in the major histocompatibility complex (MHC) is challenging in nonmodel vertebrates. The traditional method of extensive cloning and Sanger sequencing is costly and time-intensive and indirect methods of assessment often underestimate total variation. Here, we explored the suitability of 454 pyrosequencing for characterizing multilocus genes for use in population genetic studies. We compared two sample tagging protocols and two bioinformatic procedures for 454 sequencing through characterization of a 185-bp fragment of MHC DRB exon 2 in wolverines (Gulo gulo) and further compared the results with those from cloning and Sanger sequencing. We found 10 putative DRB alleles in the 88 individuals screened with between two and four alleles per individual, suggesting amplification of a duplicated DRB gene. In addition to the putative alleles, all individuals possessed an easily identifiable pseudogene. In our system, sequence variants with a frequency below 6% in an individual sample were usually artefacts. However, we found that sample preparation and data processing procedures can greatly affect variant frequencies in addition to the complexity of the multilocus system. Therefore, we recommend determining a per-amplicon-variant frequency threshold for each unique system. The extremely deep coverage obtained in our study (approximately 5000×) coupled with the semi-quantitative nature of pyrosequencing enabled us to assign all putative alleles to the two DRB loci, which is generally not possible using traditional methods. Our method of obtaining locus-specific MHC genotypes will enhance population genetic analyses and studies on disease susceptibility in nonmodel wildlife species.


Subject(s)
Genetics, Population/methods , Major Histocompatibility Complex/genetics , Mustelidae/genetics , Phylogeny , Sequence Analysis, DNA/methods , Animals , Base Sequence , Bayes Theorem , Canada , Cloning, Molecular/methods , Computational Biology , DNA Primers/genetics , Models, Genetic , Molecular Sequence Data , Pseudogenes/genetics , Species Specificity
5.
Environ Res ; 112: 67-76, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22018895

ABSTRACT

The western North Atlantic population of right whales (Eubalaena glacialis) is one of the most critically endangered of any whale population in the world. Among the factors considered to have potentially adverse effects on the health and reproduction of E. glacialis are biotoxins produced by certain microalgae responsible for causing harmful algal blooms. The worldwide incidence of these events has continued to increase dramatically over the past several decades and is expected to remain problematic under predicted climate change scenarios. Previous investigations have demonstrated that N. Atlantic right whales are being exposed to at least two classes of algal-produced environmental neurotoxins-paralytic shellfish toxins (PSTs) and domoic acid (DA). Our primary aims during this six-year study (2001-2006) were to assess whether the whales' exposure to these algal biotoxins occurred annually over multiple years, and to what extent individual whales were exposed repeatedly and/or concurrently to one or both toxin classes. Approximately 140 right whale fecal samples obtained across multiple habitats in the western N. Atlantic were analyzed for PSTs and DA. About 40% of these samples were attributed to individual whales in the North Atlantic Right Whale Catalog, permitting analysis of biotoxin exposure according to sex, age class, and reproductive status/history. Our findings demonstrate clearly that right whales are being exposed to both of these algal biotoxins on virtually an annual basis in multiple habitats for periods of up to six months (April through September), with similar exposure rates for females and males (PSTs: ∼70-80%; DA: ∼25-30%). Notably, only one of 14 lactating females sampled did not contain either PSTs or DA, suggesting the potential for maternal toxin transfer and possible effects on neonatal animals. Moreover, 22% of the fecal samples tested for PSTs and DA showed concurrent exposure to both neurotoxins, leading to questions of interactive effects. Targeted studies employing both in vivo and in vitro model systems represent the next logical step in assessing how and to what extent these algal biotoxins might compromise the health and reproduction of this endangered population.


Subject(s)
Endangered Species , Environmental Exposure/analysis , Harmful Algal Bloom , Marine Toxins/analysis , Neurotoxins/analysis , Whales/growth & development , Animals , Atlantic Ocean , Environmental Exposure/adverse effects , Environmental Monitoring , Feces/chemistry , Female , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , Kainic Acid/pharmacokinetics , Kainic Acid/toxicity , Male , Marine Toxins/pharmacokinetics , Marine Toxins/toxicity , Neurotoxins/pharmacokinetics , Neurotoxins/toxicity , Whales/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...