Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 12971, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737372

ABSTRACT

Arthropod-borne viruses (arboviruses), including those vectored by mosquitoes, have recently been cited as potential emerging health threats to marine mammals. Despite the fully aquatic habits of cetaceans, immunologic exposure to arboviruses including West Nile virus and Eastern equine encephalitis virus has been detected in wild Atlantic bottlenose dolphins, and captive orcas have been killed by West Nile virus and St. Louis encephalitis virus. Currently, there is no evidence of direct interactions between mosquitoes and marine mammals in nature, and it remains unknown how wild cetaceans are exposed to mosquito-vectored pathogens. Here, we report the first evidence of direct interactions between an aquatic mammal, the West Indian manatee, a federally threatened species, and mosquitoes in nature. Observations of manatees in Everglades National Park, Florida, USA, indicate that mosquitoes of three genera, Aedes, Anopheles, and Culex are able to locate and land on surface-active manatees, and at minimum, penetrate and probe manatee epidermis with their mouthparts. Whether mosquitoes can successfully take a blood meal is not known; however, an arbovirus-infected mosquito can inoculate extravascular host tissues with virus-infected saliva during probing. These observations suggest that it is possible for marine mammals to be exposed to mosquito-vectored pathogens through direct interactions with mosquitoes.


Subject(s)
Aedes , Anopheles , Arboviruses , Culex , Models, Biological , Parks, Recreational , Trichechus manatus , Aedes/physiology , Aedes/virology , Animals , Anopheles/physiology , Anopheles/virology , Culex/physiology , Culex/virology , Florida
2.
J Vis Exp ; (154)2019 12 10.
Article in English | MEDLINE | ID: mdl-31885370

ABSTRACT

Fragrances of many flower families have been sampled and the volatiles analyzed. Knowing the compounds that make up the fragrances can be an important step to conservation of flowers that are threatened or endangered. Because floral fragrance is critical for attracting pollinators, this method could be used to better understand or even enhance pollination. We present a protocol using a portable charcoal air filter and vacuum to collect floral fragrance volatiles, which are then analyzed by a GC-MS. By using this method, fragrance volatiles can be sampled using a non-destructive method with a machine that is easily transported. This methodology uses a rapid sampling procedure, cutting sampling time down from 2-3 hours to approximately 10 minutes. Using GC-MS, the fragrance compounds can be identified individually, based on authentic standards. The steps used for collecting fragrance and control data are presented, from material setup to collecting the data output.


Subject(s)
Flowers/chemistry , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/chemistry
3.
Commun Biol ; 1: 92, 2018.
Article in English | MEDLINE | ID: mdl-30271973

ABSTRACT

Feeding upon vertebrate blood by mosquitoes permits transmission of diverse pathogens, including viruses, protozoa, and nematodes. Despite over a century of intensive study, no mosquito species is known to specialize on non-vertebrate hosts. Using molecular analyses and field observations, we provide the first evidence, to our knowledge, that a mosquito, Uranotaenia sapphirina, specializes on annelid hosts (earthworms and leeches) while its sympatric congener, Uranotaenia lowii, feeds only on anurans (frogs and toads). Our results demonstrate that Ur. sapphirina feeds on annelid hosts (100% of identified blood meals; n = 72; collected throughout Florida), findings that are supported by field observations of these mosquitoes feeding on Sparganophilus worms and freshwater leeches. These findings indicate that adult mosquitoes utilize a much broader range of host taxa than previously recognized, with implications for epidemiology and the evolution of host use patterns in mosquitoes.

4.
PLoS Negl Trop Dis ; 12(8): e0006767, 2018 08.
Article in English | MEDLINE | ID: mdl-30161128

ABSTRACT

The transmission dynamics of mosquito-vectored pathogens are, in part, mediated by mosquito host-feeding patterns. These patterns are elucidated using blood meal analysis, a collection of serological and molecular techniques that determine the taxonomic identities of the host animals from which blood meals are derived. Modern blood meal analyses rely on polymerase chain reaction (PCR), DNA sequencing, and bioinformatic comparisons of blood meal DNA sequences to reference databases. Ideally, primers used in blood meal analysis PCRs amplify templates from a taxonomically diverse range of vertebrates, produce a short amplicon, and avoid co-amplification of non-target templates. Few primer sets that fit these requirements are available for the cytochrome c oxidase subunit I (COI) gene, the species identification marker with the highest taxonomic coverage in reference databases. Here, we present new primer sets designed to amplify fragments of the DNA barcoding region of the vertebrate COI gene, while avoiding co-amplification of mosquito templates, without multiplexed or nested PCR. Primers were validated using host vertebrate DNA templates from mosquito blood meals of known origin, representing all terrestrial vertebrate classes, and field-collected mosquito blood meals of unknown origin. We found that the primers were generally effective in amplifying vertebrate host, but not mosquito DNA templates. Applied to the sample of unknown mosquito blood meals, > 98% (60/61) of blood meals samples were reliably identified, demonstrating the feasibility of identifying mosquito hosts with the new primers. These primers are beneficial in that they can be used to amplify COI templates from a diverse range of vertebrate hosts using standard PCR, thereby streamlining the process of identifying the hosts of mosquitoes, and could be applied to next generation DNA sequencing and metabarcoding approaches.


Subject(s)
Culicidae/physiology , DNA Barcoding, Taxonomic/methods , DNA/genetics , Vertebrates/blood , Vertebrates/genetics , Animals , DNA/classification , DNA Replication , Feeding Behavior , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , Sequence Analysis, DNA
5.
PLoS One ; 13(1): e0190633, 2018.
Article in English | MEDLINE | ID: mdl-29342169

ABSTRACT

The Burmese python, Python bivittatus Kuhl, is a well-established invasive species in the greater Everglades ecosystem of southern Florida, USA. Most research on its ecological impacts focuses on its role as a predator and its trophic interactions with native vertebrate species, particularly mammals. Beyond predation, there is little known about the ecological interactions between P. bivittatus and native faunal communities. It is likely that established populations of P. bivittatus in southern Florida serve as hosts for native mosquito communities. To test this concept, we used mitochondrial cytochrome c oxidase subunit I DNA barcoding to determine the hosts of blood fed mosquitoes collected at a research facility in northern Florida where captive P. bivittatus and Argentine black and white tegu, Salvator merianae (Duméril and Bibron), are maintained in outdoor enclosures, accessible to local mosquitoes. We recovered python DNA from the blood meals of three species of Culex mosquitoes: Culex erraticus (Dyar and Knab), Culex quinquefasciatus Say, and Culex pilosus (Dyar and Knab). Culex erraticus conclusively (P = 0.001; Fisher's Exact Test) took more blood meals from P. bivittatus than from any other available host. While the majority of mosquito blood meals in our sample were derived from P. bivittatus, only one was derived from S. merianae. These results demonstrate that local mosquitoes will feed on invasive P. bivittatus, a recently introduced host. If these interactions also occur in southern Florida, P. bivittatus may be involved in the transmission networks of mosquito-vectored pathogens. Our results also illustrate the potential of detecting the presence of P. bivittatus in the field through screening mosquito blood meals for their DNA.


Subject(s)
Boidae/physiology , Culex , Host-Parasite Interactions , Introduced Species , Animals , Female , Florida
6.
Plant Signal Behav ; 13(1): e1422461, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29297748

ABSTRACT

South Florida is home to a number of native species of orchids. The Florida Panther National Wildlife Refuge has 27 known species, including Prosthechea cochleata, the clamshell orchid, which is listed as endangered on Florida's Regulated Plant Index. In a prior study done on this species in Mexico, P. cochleata was found to produce no floral fragrance at the particular study location. However, blooming orchids of this species at the University of Florida in Gainesville, were noted to be fragrant. In this paper, we document the presence of floral fragrance compounds from P. cochleata by using by gas chromatography mass spectrometry (GC/MS) analysis of headspace volatile collection. The orchids sampled were found to be consistently producing eight volatiles that are common in floral fragrances, including those of previous orchid species studied. By knowing the fragrance compounds produced, we can better understand the pollination biology of this endangered orchid. This information could be used to help future conservation efforts for P. cochelata by increasing pollination and subsequent seed capsule production.


Subject(s)
Endangered Species , Flowers/physiology , Odorants/analysis , Orchidaceae/physiology , Florida
7.
Parasit Vectors ; 9(1): 503, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27629021

ABSTRACT

BACKGROUND: Determination of the interactions between hematophagous arthropods and their hosts is a necessary component to understanding the transmission dynamics of arthropod-vectored pathogens. Current molecular methods to identify hosts of blood-fed arthropods require the preservation of host DNA to serve as an amplification template. During transportation to the laboratory and storage prior to molecular analysis, genetic samples need to be protected from nucleases, and the degradation effects of hydrolysis, oxidation and radiation. Preservation of host DNA contained in field-collected blood-fed specimens has an additional caveat: suspension of the degradative effects of arthropod digestion on host DNA. Unless effective preservation methods are implemented promptly after blood-fed specimens are collected, host DNA will continue to degrade. Preservation methods vary in their efficacy, and need to be selected based on the logistical constraints of the research program. METHODS: We compared four preservation methods (cold storage at -20 °C, desiccation, ethanol storage of intact mosquito specimens and crushed specimens on filter paper) for field storage of host DNA from blood-fed mosquitoes across a range of storage and post-feeding time periods. The efficacy of these techniques in maintaining host DNA integrity was evaluated using a polymerase chain reaction (PCR) to detect the presence of a sufficient concentration of intact host DNA templates for blood meal analysis. We applied a logistic regression model to assess the effects of preservation method, storage time and post-feeding time on the binomial response variable, amplification success. RESULTS: Preservation method, storage time and post-feeding time all significantly impacted PCR amplification success. Filter papers and, to a lesser extent, 95 % ethanol, were the most effective methods for the maintenance of host DNA templates. Amplification success of host DNA preserved in cold storage at -20 °C and desiccation was poor. CONCLUSIONS: Our data suggest that, of the methods tested, host DNA template integrity was most stable when blood meals were preserved using filter papers. Filter paper preservation is effective over short- and long-term storage, while ethanol preservation is only suitable for short-term storage. Cold storage at -20 °C, and desiccation of blood meal specimens, even for short time periods, should be avoided.


Subject(s)
Aedes/physiology , Blood , DNA Barcoding, Taxonomic , DNA/blood , DNA/metabolism , Mosquito Vectors/physiology , Preservation, Biological/methods , Preservation, Biological/standards , Animals , Cold Temperature , DNA/chemistry , DNA/isolation & purification , Desiccation , Ethanol/chemistry , Feeding Behavior , Filtration , Paper , Polymerase Chain Reaction , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...