Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Proc Natl Acad Sci U S A ; 121(19): e2313590121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683978

ABSTRACT

Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.


Subject(s)
Brain-Derived Neurotrophic Factor , Exosomes , Muscle, Skeletal , Exosomes/metabolism , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/innervation , Brain-Derived Neurotrophic Factor/metabolism , Mice , Fibronectins/metabolism , Motor Neurons/metabolism , Interleukin-6/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Neurons/metabolism , Nerve Growth Factors/metabolism , Myokines
2.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38328159

ABSTRACT

Optimal imaging strategies remain underdeveloped to maximize information for fluorescence microscopy while minimizing the harm to fragile living systems. Taking hint from the supercontinuum generation in ultrafast laser physics, we generated supercontinuum fluorescence from untreated unlabeled live samples before nonlinear photodamage onset. Our imaging achieved high-content cell phenotyping and tissue histology, identified bovine embryo polarization, quantified aging-related stress across cell types and species, demystified embryogenesis before and after implantation, sensed drug cytotoxicity in real-time, scanned brain area for targeted patching, optimized machine learning to track small moving organisms, induced two-photon phototropism of leaf chloroplasts under two-photon photosynthesis, unraveled microscopic origin of autumn colors, and interrogated intestinal microbiome. The results enable a facility-type microscope to freely explore vital molecular biology across life sciences.

3.
Front Neurosci ; 17: 1196606, 2023.
Article in English | MEDLINE | ID: mdl-37732312

ABSTRACT

The neurovascular system forms the interface between the tissue of the central nervous system (CNS) and circulating blood. It plays a critical role in regulating movement of ions, small molecules, and cellular regulators into and out of brain tissue and in sustaining brain health. The neurovascular unit (NVU), the cells that form the structural and functional link between cells of the brain and the vasculature, maintains the blood-brain interface (BBI), controls cerebral blood flow, and surveils for injury. The neurovascular system is dynamic; it undergoes tight regulation of biochemical and cellular interactions to balance and support brain function. Development of an intrinsic circadian clock enables the NVU to anticipate rhythmic changes in brain activity and body physiology that occur over the day-night cycle. The development of circadian neurovascular function involves multiple cell types. We address the functional aspects of the circadian clock in the components of the NVU and their effects in regulating neurovascular physiology, including BBI permeability, cerebral blood flow, and inflammation. Disrupting the circadian clock impairs a number of physiological processes associated with the NVU, many of which are correlated with an increased risk of dysfunction and disease. Consequently, understanding the cell biology and physiology of the NVU is critical to diminishing consequences of impaired neurovascular function, including cerebral bleeding and neurodegeneration.

4.
Micromachines (Basel) ; 14(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36677275

ABSTRACT

Cues in the micro-environment are key determinants in the emergence of complex cellular morphologies and functions. Primary among these is the presence of neighboring cells that form networks. For high-resolution analysis, it is crucial to develop micro-environments that permit exquisite control of network formation. This is especially true in cell science, tissue engineering, and clinical biology. We introduce a new approach for assembling polydimethylsiloxane (PDMS)-based microfluidic environments that enhances cell network formation and analyses. We report that the combined processes of PDMS solvent-extraction and hydrothermal annealing create unique conditions that produce high-strength bonds between solvent-extracted PDMS (E-PDMS) and glass-properties not associated with conventional PDMS. Extraction followed by hydrothermal annealing removes unbound oligomers, promotes polymer cross-linking, facilitates covalent bond formation with glass, and retains the highest biocompatibility. Herein, our extraction protocol accelerates oligomer removal from 5 to 2 days. Resulting microfluidic platforms are uniquely suited for cell-network studies owing to high adhesion forces, effectively corralling cellular extensions and eliminating harmful oligomers. We demonstrate the simple, simultaneous actuation of multiple microfluidic domains for invoking ATP- and glutamate-induced Ca2+ signaling in glial-cell networks. These E-PDMS modifications and flow manipulations further enable microfluidic technologies for cell-signaling and network studies as well as novel applications.

5.
Cells ; 11(13)2022 06 30.
Article in English | MEDLINE | ID: mdl-35805157

ABSTRACT

Complex brain functions, including learning and memory, arise in part from the modulatory role of astrocytes on neuronal circuits. Functionally, the dentate gyrus (DG) exhibits differences in the acquisition of long-term potentiation (LTP) between day and night. We hypothesize that the dynamic nature of astrocyte morphology plays an important role in the functional circuitry of hippocampal learning and memory, specifically in the DG. Standard microscopy techniques, such as differential interference contrast (DIC), present insufficient contrast for detecting changes in astrocyte structure and function and are unable to inform on the intrinsic structure of the sample in a quantitative manner. Recently, gradient light interference microscopy (GLIM) has been developed to upgrade a DIC microscope with quantitative capabilities such as single-cell dry mass and volume characterization. Here, we present a methodology for combining GLIM and electrophysiology to quantify the astrocyte morphological behavior over the day-night cycle. Colocalized measurements of GLIM and fluorescence allowed us to quantify the dry masses and volumes of hundreds of astrocytes. Our results indicate that, on average, there is a 25% cell volume reduction during the nocturnal cycle. Remarkably, this cell volume change takes place at constant dry mass, which suggests that the volume regulation occurs primarily through aqueous medium exchange with the environment.


Subject(s)
Hippocampus , Long-Term Potentiation , Astrocytes , Hippocampus/physiology , Long-Term Potentiation/physiology , Neurons/metabolism
6.
Methods Mol Biol ; 2482: 181-189, 2022.
Article in English | MEDLINE | ID: mdl-35610427

ABSTRACT

Oscillatory output from the suprachiasmatic nuclei (SCN) of the hypothalamus communicates time-of-day information to the brain and body. The SCN's intrinsic ~24-h rhythm can be measured in the neuronal firing rate both in vivo and in vitro, where it continues unperturbed. This robust reporter of endogenous physiology in the SCN brain slice can be widely used to study dynamic changes in SCN physiology, its changing sensitivity to phase-altering signals, and underlying mechanisms. To provide relevant and reproducible data, care must be taken to ensure health of the SCN brain slice. The methods detailed here have been proven to produce healthy, long-lived brain slices.


Subject(s)
Circadian Rhythm , Suprachiasmatic Nucleus , Circadian Rhythm/physiology , Hypothalamus , Neurons/physiology , Suprachiasmatic Nucleus/physiology
7.
Sci Adv ; 6(42)2020 10.
Article in English | MEDLINE | ID: mdl-33067233

ABSTRACT

"Living" cell sheets or bioelectronic chips have great potentials to improve the quality of diagnostics and therapies. However, handling these thin and delicate materials remains a grand challenge because the external force applied for gripping and releasing can easily deform or damage the materials. This study presents a soft manipulator that can manipulate and transport cell/tissue sheets and ultrathin wearable biosensing devices seamlessly by recapitulating how a cephalopod's suction cup works. The soft manipulator consists of an ultrafast thermo-responsive, microchanneled hydrogel layer with tissue-like softness and an electric heater layer. The electric current to the manipulator drives microchannels of the gel to shrink/expand and results in a pressure change through the microchannels. The manipulator can lift/detach an object within 10 s and can be used repeatedly over 50 times. This soft manipulator would be highly useful for safe and reliable assembly and implantation of therapeutic cell/tissue sheets and biosensing devices.

8.
Eur J Neurosci ; 51(1): 34-46, 2020 01.
Article in English | MEDLINE | ID: mdl-30614107

ABSTRACT

Behaviors, such as sleeping, foraging, and learning, are controlled by different regions of the rat brain, yet they occur rhythmically over the course of day and night. They are aligned adaptively with the day-night cycle by an endogenous circadian clock in the suprachiasmatic nucleus (SCN), but local mechanisms of rhythmic control are not established. The SCN expresses a ~24-hr oscillation in reduction-oxidation that modulates its own neuronal excitability. Could circadian redox oscillations control neuronal excitability elsewhere in the brain? We focused on the CA1 region of the rat hippocampus, which is known for integrating information as memories and where clock gene expression undergoes a circadian oscillation that is in anti-phase to the SCN. Evaluating long-term imaging of endogenous redox couples and biochemical determination of glutathiolation levels, we observed oscillations with a ~24 hr period that is 180° out-of-phase to the SCN. Excitability of CA1 pyramidal neurons, primary hippocampal projection neurons, also exhibits a rhythm in resting membrane potential that is circadian time-dependent and opposite from that of the SCN. The reducing reagent glutathione rapidly and reversibly depolarized the resting membrane potential of CA1 neurons; the magnitude is time-of-day-dependent and, again, opposite from the SCN. These findings extend circadian redox regulation of neuronal excitability from the SCN to the hippocampus. Insights into this system contribute to understanding hippocampal circadian processes, such as learning and memory, seizure susceptibility, and memory loss with aging.


Subject(s)
Circadian Rhythm , Suprachiasmatic Nucleus , Animals , Hippocampus , Neurons , Oxidation-Reduction , Rats
9.
Front Neurosci ; 13: 1281, 2019.
Article in English | MEDLINE | ID: mdl-31866806

ABSTRACT

Results from a variety of sources indicate a role for pituitary adenylate cyclase-activating polypeptide (PACAP) in light/glutamate-induced phase resetting of the circadian clock mediated by the retinohypothalamic tract (RHT). Attempts to block or remove PACAP's contribution to clock-resetting have generated phenotypes that differ in their responses to light or glutamate. For example, previous studies of circadian behaviors found that period-maintenance and early-night phase delays are intact in PACAP-null mice, yet there is a consistent deficit in behavioral phase-resetting to light stimulation in the late night. Here we report rodent stimulus-response characteristics of PACAP release from the RHT, and map these to responses of the suprachiasmatic nucleus (SCN) in intact and PACAP-deficient mouse hypothalamus with regard to phase-resetting. SCN of PACAP-null mice exhibit normal circadian rhythms in neuronal activity, but are "blind" to glutamate stimulating phase-advance responses in late night, although not in early night, consistent with previously reported selective lack of late-night light behavioral responsiveness of these mice. Induction of CREB phosphorylation, a hallmark of the light/glutamate response of the SCN, also is absent in SCN-containing ex vivo slices from PACAP-deficient mouse hypothalamus. PACAP replacement to the SCN of PACAP-null mice restored wild-type phase-shifting of firing-rate patterns in response to glutamate applied to the SCN in late night. Likewise, ex vivo SCN of wild-type mice post-orbital enucleation are unresponsive to glutamate unless PACAP also is restored. Furthermore, we demonstrate that the period of efficacy of PACAP at SCN nerve terminals corresponds to waxing of PACAP mRNA expression in ipRGCs during the night, and waning during the day. These results validate the use of PACAP-deficient mice in defining the role and specificity of PACAP as a co-transmitter with glutamate in ipRGC-RHT projections to SCN in phase advancing the SCN circadian rhythm in late night.

10.
Nat Commun ; 10(1): 4691, 2019 10 16.
Article in English | MEDLINE | ID: mdl-31619681

ABSTRACT

Multiple scattering and absorption limit the depth at which biological tissues can be imaged with light. In thick unlabeled specimens, multiple scattering randomizes the phase of the field and absorption attenuates light that travels long optical paths. These obstacles limit the performance of transmission imaging. To mitigate these challenges, we developed an epi-illumination gradient light interference microscope (epi-GLIM) as a label-free phase imaging modality applicable to bulk or opaque samples. Epi-GLIM enables studying turbid structures that are hundreds of microns thick and otherwise opaque to transmitted light. We demonstrate this approach with a variety of man-made and biological samples that are incompatible with imaging in a transmission geometry: semiconductors wafers, specimens on opaque and birefringent substrates, cells in microplates, and bulk tissues. We demonstrate that the epi-GLIM data can be used to solve the inverse scattering problem and reconstruct the tomography of single cells and model organisms.


Subject(s)
Microscopy, Interference/instrumentation , Animals , Brain , HeLa Cells , Hep G2 Cells , Humans , Imaging, Three-Dimensional , Larva , Mice , Microscopy, Interference/methods , Neurons , Optical Imaging , Quartz , Rats , Semiconductors , Tendons , Zebrafish
11.
Biomaterials ; 217: 119292, 2019 10.
Article in English | MEDLINE | ID: mdl-31279098

ABSTRACT

Neurodegenerative diseases and disorders seriously impact memory and cognition and can become life-threatening. Current medical techniques attempt to combat these detrimental effects mainly through the administration of neuromedicine. However, drug efficacy is limited by rapid dispersal of the drugs to off-target sites while the site of administration is prone to overdose. Many neuropathological conditions are accompanied by excessive reactive oxygen species (ROS) due to the inflammatory response. Accordingly, ROS-responsive drug delivery systems have emerged as a promising solution. To guide intelligent and comprehensive design of ROS-responsive drug delivery systems, this review article discusses the two following topics: (1) the biology of ROS in both healthy and diseased nervous systems and (2) recent developments in ROS-responsive, drug delivery system design. Overall, this review article would assist efforts to make better decisions about designing ROS-responsive, neural drug delivery systems, including the selection of ROS-responsive functional groups.


Subject(s)
Neurodegenerative Diseases/metabolism , Reactive Oxygen Species/metabolism , Animals , Drug Delivery Systems , Humans , Nervous System/metabolism
12.
Acta Biomater ; 90: 412-423, 2019 05.
Article in English | MEDLINE | ID: mdl-30951897

ABSTRACT

Intracellular transport is fundamental for neuronal function and development and is dependent on the formation of stable actin filaments. N-cadherin, a cell-cell adhesion protein, is actively involved in neuronal growth and actin cytoskeleton organization. Various groups have explored how neurons behaved on substrates engineered to present N-cadherin; however, few efforts have been made to examine how these surfaces modulate neuronal intracellular transport. To address this issue, we assembled a substrate to which recombinant N-cadherin molecules are physiosorbed using graphene oxide (GO) or reduced graphene oxide (rGO). N-cadherin physisorbed on GO and rGO led to a substantial enhancement of intracellular mass transport along neurites relative to N-cadherin on glass, due to increased neuronal adhesion, neurite extensions, dendritic arborization and glial cell adhesion. This study will be broadly useful for recreating active neural tissues in vitro and for improving our understanding of the development, homeostasis, and physiology of neurons. STATEMENT OF SIGNIFICANCE: Intracellular transport of proteins and chemical cues is extremely important for culturing neurons in vitro, as they replenish materials within and facilitate communication between neurons. Various studies have shown that intracellular transport is dependent on the formation of stable actin filaments. However, the extent to which cadherin-mediated cell-cell adhesion modulates intracellular transport is not heavily explored. In this study, N-cadherin was adsorbed onto graphene oxide-based substrates to understand the role of cadherin at a molecular level and the intracellular transport within cells was examined using spatial light interference microscopy. As such, the results of this study will serve to better understand and harness the role of cell-cell adhesion in neuron development and regeneration.


Subject(s)
Cadherins , Graphite , Nerve Tissue Proteins , Neurites/metabolism , Neurogenesis/drug effects , Animals , Biological Transport, Active/drug effects , Cadherins/chemistry , Cadherins/pharmacology , Cell Adhesion/drug effects , Graphite/chemistry , Graphite/pharmacology , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/pharmacology , Rats , Rats, Long-Evans
13.
Anal Chem ; 90(19): 11572-11580, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30188687

ABSTRACT

The brain functions through chemical interactions between many different cell types, including neurons and glia. Acquiring comprehensive information on complex, heterogeneous systems requires multiple analytical tools, each of which have unique chemical specificity and spatial resolution. Multimodal imaging generates complementary chemical information via spatially localized molecular maps, ideally from the same sample, but requires method enhancements that span from data acquisition to interpretation. We devised a protocol for performing matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance-mass spectrometry imaging (MSI), followed by infrared (IR) spectroscopic imaging on the same specimen. Multimodal measurements from the same tissue provide precise spatial alignment between modalities, enabling more advanced image processing such as image fusion and sharpening. Performing MSI first produces higher quality data from each technique compared to performing IR imaging before MSI. The difference is likely due to fixing the tissue section during MALDI matrix removal, thereby preventing analyte degradation occurring during IR imaging from an unfixed specimen. Leveraging the unique capabilities of each modality, we utilized pan sharpening of MS (mass spectrometry) ion images with selected bands from IR spectroscopy and midlevel data fusion. In comparison to sharpening with histological images, pan sharpening can employ a plethora of IR bands, producing sharpened MS images while retaining the fidelity of the initial ion images. Using Laplacian pyramid sharpening, we determine the localization of several lipids present within the hippocampus with high mass accuracy at 5 µm pixel widths. Further, through midlevel data fusion of the imaging data sets combined with k-means clustering, the combined data set discriminates between additional anatomical structures unrecognized by the individual imaging approaches. Significant differences between molecular ion abundances are detected between relevant structures within the hippocampus, such as the CA1 and CA3 regions. Our methodology provides high quality multiplex and multimodal chemical imaging of the same tissue sample, enabling more advanced data processing and analysis routines.


Subject(s)
Brain Chemistry/physiology , Brain/pathology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Infrared , Animals , CA1 Region, Hippocampal/chemistry , CA1 Region, Hippocampal/pathology , CA2 Region, Hippocampal/chemistry , CA2 Region, Hippocampal/pathology , CA3 Region, Hippocampal/chemistry , CA3 Region, Hippocampal/pathology , Principal Component Analysis , Rats
14.
ACS Appl Mater Interfaces ; 10(42): 35705-35714, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30251826

ABSTRACT

Directing neurons to form predetermined circuits with the intention of treating neurological disorders and neurodegenerative diseases is a fundamental goal and current challenge in neuroengineering. Until recently, only neuronal aggregates were studied and characterized in culture, which can limit information gathered to populations of cells. In this study, we use a substrate constructed of arrays of strain-induced self-rolled-up membrane 3D architectures. This results in changes in the neuronal architecture and altered growth dynamics of neurites. Hippocampal neurons from postnatal rats were cultured at low confluency (∼250 cells mm-2) on an array of transparent rolled-up microtubes (µ-tubes; 4-5 µm diameter) of varying topographical arrangements. Neurite growth on the µ-tubes was characterized and compared to controls in order to establish a baseline for alignment imposed by the topography. Compared to control substrates, neurites are significantly more aligned toward the 0° reference on the µ-tube array. Pitch (20-60 and 100 µm) and µ-tube length (30-80 µm) of array elements were also varied to investigate their impact on neurite alignment. We found that alignment was improved by the gradient pitch arrangement and with longer µ-tubes. Application of this technology will enhance the ability to construct intentional neural circuits through array design and manipulation of individual neurons and can be adapted to address challenges in neural repair, reinnervation, and neuroregeneration.


Subject(s)
Hippocampus/physiology , Microtechnology/instrumentation , Nerve Net/physiology , Silicon Compounds/pharmacology , Animals , Nerve Net/drug effects , Neurites/drug effects , Neurites/metabolism , Rats
15.
ACS Chem Neurosci ; 9(8): 2001-2008, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29901982

ABSTRACT

Daily oscillations of brain and body states are under complex temporal modulation by environmental light and the hypothalamic suprachiasmatic nucleus (SCN), the master circadian clock. To better understand mediators of differential temporal modulation, we characterize neuropeptide releasate profiles by nonselective capture of secreted neuropeptides in an optic nerve horizontal SCN brain slice model. Releasates are collected following electrophysiological stimulation of the optic nerve/retinohypothalamic tract under conditions that alter the phase of the SCN activity state. Secreted neuropeptides are identified by intact mass via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found time-of-day-specific suites of peptides released downstream of optic nerve stimulation. Peptide release was modified differentially with respect to time-of-day by stimulus parameters and by inhibitors of glutamatergic or PACAPergic neurotransmission. The results suggest that SCN physiology is modulated by differential peptide release of both known and unexpected peptides that communicate time-of-day-specific photic signals via previously unreported neuropeptide signatures.


Subject(s)
Circadian Clocks/physiology , Peptides/metabolism , Animals , Circadian Rhythm/physiology , Electric Stimulation , Glutamic Acid/metabolism , Male , Membrane Potentials/physiology , Neurons/metabolism , Optic Nerve/metabolism , Photoperiod , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Rats, Long-Evans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Suprachiasmatic Nucleus/metabolism , Time Factors , Tissue Culture Techniques
16.
Free Radic Biol Med ; 119: 45-55, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29398284

ABSTRACT

Oxidation-reduction reactions are essential to life as the core mechanisms of energy transfer. A large body of evidence in recent years presents an extensive and complex network of interactions between the circadian and cellular redox systems. Recent advances show that cellular redox state undergoes a ~24-h (circadian) oscillation in most tissues and is conserved across the domains of life. In nucleated cells, the metabolic oscillation is dependent upon the circadian transcription-translation machinery and, vice versa, redox-active proteins and cofactors feed back into the molecular oscillator. In the suprachiasmatic nucleus (SCN), a hypothalamic region of the brain specialized for circadian timekeeping, redox oscillation was found to modulate neuronal membrane excitability. The SCN redox environment is relatively reduced in daytime when neuronal activity is highest and relatively oxidized in nighttime when activity is at its lowest. There is evidence that the redox environment directly modulates SCN K+ channels, tightly coupling metabolic rhythms to neuronal activity. Application of reducing or oxidizing agents produces rapid changes in membrane excitability in a time-of-day-dependent manner. We propose that this reciprocal interaction may not be unique to the SCN. In this review, we consider the evidence for circadian redox oscillation and its interdependencies with established circadian timekeeping mechanisms. Furthermore, we will investigate the effects of redox on ion-channel gating dynamics and membrane excitability. The susceptibility of many different ion channels to modulation by changes in the redox environment suggests that circadian redox rhythms may play a role in the regulation of all excitable cells.


Subject(s)
Circadian Rhythm/physiology , Neurons/physiology , Oxidation-Reduction , Animals , Humans , Ion Channels/physiology , Suprachiasmatic Nucleus/physiology
17.
APL Bioeng ; 2(4): 040901, 2018 Dec.
Article in English | MEDLINE | ID: mdl-31069321

ABSTRACT

Recent technological breakthroughs in our ability to derive and differentiate induced pluripotent stem cells, organoid biology, organ-on-chip assays, and 3-D bioprinting have all contributed to a heightened interest in the design, assembly, and manufacture of living systems with a broad range of potential uses. This white paper summarizes the state of the emerging field of "multi-cellular engineered living systems," which are composed of interacting cell populations. Recent accomplishments are described, focusing on current and potential applications, as well as barriers to future advances, and the outlook for longer term benefits and potential ethical issues that need to be considered.

18.
ACS Appl Mater Interfaces ; 9(41): 35642-35650, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28961399

ABSTRACT

Overproduced reactive oxygen species (ROS) are closely related to various health problems including inflammation, infection, and cancer. Abnormally high ROS levels can cause serious oxidative damage to biomolecules, cells, and tissues. A series of nano- or microsized particles has been developed to reduce the oxidative stress level by delivering antioxidant drugs. However, most systems are often plagued by slow molecular discharge, driven by diffusion. Herein, this study demonstrates the polymeric particles whose internal pressure can increase upon exposure to H2O2, one of the ROS, and in turn, discharge antioxidants actively. The on-demand pressurized particles are assembled by simultaneously encapsulating water-dispersible manganese oxide (MnO2) nanosheets and green tea derived epigallocatechin gallate (EGCG) molecules into a poly(lactic-co-glycolic acid) (PLGA) spherical shell. In the presence of H2O2, the MnO2 nanosheets in the PLGA particle generate oxygen gas by decomposing H2O2 and increase the internal pressure. The pressurized PLGA particles release antioxidative EGCG actively and, in turn, protect vascular and brain tissues from oxidative damage more effectively than the particles without MnO2 nanosheets. This H2O2 responsive, self-pressurizing particle system would be useful to deliver a wide array of molecular cargos in response to the oxidation level.

19.
ACS Cent Sci ; 3(5): 381-393, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28573199

ABSTRACT

The tumor microenvironment is implicated in orchestrating cancer cell transformation and metastasis. However, specific cell-ligand interactions between cancer cells and the extracellular matrix are difficult to decipher due to a dynamic and multivariate presentation of many signaling molecules. Here we report a versatile peptide microarray platform that is capable of screening for cancer cell phenotypic changes in response to ligand-receptor interactions. Using a screen of 78 peptide combinations derived from proteins present in the melanoma microenvironment, we identify a proteoglycan binding and bone morphogenic protein 7 (BMP7) derived sequence that selectively promotes the expression of several putative melanoma initiating cell markers. We characterize signaling associated with each of these peptides in the activation of melanoma pro-tumorigenic signaling and reveal a role for proteoglycan mediated adhesion and signaling through Smad 2/3. A defined substratum that controls the state of malignant melanoma may prove useful in spatially normalizing a heterogeneous population of tumor cells for discovery of therapeutics that target a specific state and for identifying new drug targets and reagents for intervention.

20.
Chem Sci ; 8(5): 3926-3938, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28553535

ABSTRACT

Localization of metabolites using multiplexed mass spectrometry imaging (MSI) provides important chemical information for biological research. In contrast to matrix-assisted laser desorption/ionization (MALDI), TiO2-assisted laser desorption/ionization (LDI) for MSI improves detection of low molecular mass metabolites (<500 Da) by reducing matrix background. However, the low UV absorption of TiO2 nanoparticles and their ester hydrolysis catalytic activity hinder the detection of phospholipids and many low-abundance molecules. To address these challenges, we evaluated and optimized the material morphology and composition of TiO2. Dopamine (DA) was found to be an efficient ligand for TiO2, resulting in increased UV light absorption, higher surface pH, and formation of monolithic TiO2-DA structures. The sub-micron scale and higher surface pH of the TiO2 particle sizes led to improved detection of phospholipid signals. Compared to unmodified TiO2 sub-micron particles, the DA-modified TiO2 monolith led to 10- to 30-fold increases in the signal-to-noise ratios of a number of compound peaks. The TiO2-DA monolith-assisted LDI MSI approach has higher selectivity and sensitivity for Lewis basic compounds, such as fatty acids, cholesterols, ceramides, diacylglycerols, and phosphatidylethanolamine, when analyzed in positive mode, than traditional MALDI MS. Using this new method, over 100 molecules, including amino acids, alkaloids, free fatty acids, peptides, and lipids, were localized in mouse brain sections. By comparing the presence and localization of those molecules in young and old mouse brains, the approach demonstrated good performance in the determination of aging-related neurochemical changes in the brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...