Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(16): 4677-4694, 2023 08.
Article in English | MEDLINE | ID: mdl-37317893

ABSTRACT

Corals are important models for understanding invertebrate host-microbe interactions; however, to fully discern mechanisms involved in these relationships, experimental approaches for manipulating coral-bacteria associations are needed. Coral-associated bacteria affect holobiont health via nutrient cycling, metabolic exchanges and pathogen exclusion, yet it is not fully understood how bacterial community shifts affect holobiont health and physiology. In this study, a combination of antibiotics (ampicillin, streptomycin and ciprofloxacin) was used to disrupt the bacterial communities of 14 colonies of the reef framework-building corals Pocillopora meandrina and P. verrucosa, originally collected from Panama and hosting diverse algal symbionts (family Symbiodiniaceae). Symbiodiniaceae photochemical efficiencies and holobiont oxygen consumption (as proxies for coral health) were measured throughout a 5-day exposure. Antibiotics altered bacterial community composition and reduced alpha and beta diversity, however, several bacteria persisted, leading to the hypothesis that these bacteria are either antibiotics resistant or occupy internal niches that are shielded from antibiotics. While antibiotics did not affect Symbiodiniaceae photochemical efficiency, antibiotics-treated corals had lower oxygen consumption rates. RNAseq revealed that antibiotics increased expression of Pocillopora immunity and stress response genes at the expense of cellular maintenance and metabolism functions. Together, these results reveal that antibiotic disruption of corals' native bacteria negatively impacts holobiont health by decreasing oxygen consumption and activating host immunity without directly impairing Symbiodiniaceae photosynthesis, underscoring the critical role of coral-associated bacteria in holobiont health. They also provide a baseline for future experiments that manipulate Pocillopora corals' symbioses by first reducing the diversity and complexity of coral-associated bacteria.


Subject(s)
Anthozoa , Dinoflagellida , Microbiota , Animals , Anthozoa/genetics , Anthozoa/microbiology , Anti-Bacterial Agents/pharmacology , Microbiota/genetics , Symbiosis/genetics , Bacteria/genetics , Oxygen Consumption , Dinoflagellida/genetics , Gene Expression , Coral Reefs
2.
Article in English | MEDLINE | ID: mdl-29559253

ABSTRACT

Aplysia californica was hatchery-reared in two turbulence protocols intended to imitate the intermittent turbulence of the native habitat and to promote development of the foot muscle from the exercise of adhering to the substrate. Hatchery-reared animals in turbulence regimes were compared to siblings reared in quiet water, and to wild animals, using noninvasive assessments of the development of the foot muscle. The objective was to learn if the turbulence-reared phenotype mimicked laboratory-targeted aspects of the wild phenotype, that is, reflex behavior, swim tunnel performance, and resting oxygen consumption (MO2). No group exhibited different MO2. MO2 values for all of the compared groups of animals followed the power law, with an exponent of 0.69, consistent with this relationship throughout the animal kingdom. Turbulence-induced exercise did not affect the righting reflex or the tail withdrawal reflex, standard behavioral tests that involve the foot muscle, compared to quiet water-reared siblings. Wild individuals had significantly shorter time-to-right than all hatchery reared animals, however, wild animals did not perform better in flume tests. That turbulence-reared hatchery- or wild animals lacked superior flume performance suggests that this species may shelter from intertidal wave energy to remain near its optimal feeding areas.


Subject(s)
Aplysia/physiology , Aquaculture , Behavior, Animal , Reflex/physiology , Swimming , Animals , Cohort Studies , Muscles/physiology , Oxygen Consumption/physiology , Phenotype
3.
Comp Biochem Physiol C Toxicol Pharmacol ; 149(2): 215-23, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19000779

ABSTRACT

Over the last three decades, the California sea hare, Aplysia californica, has played an increasingly important role as a model organism in the neurosciences. Since 1995, the National Resource for Aplysia has supported a growing research community by providing a consistent supply of laboratory-reared individuals of known age, reproductive status, and environmental history. The purpose of the present study was to resolve the key biological factors necessary for successful culture of large numbers of high quality larval Aplysia. Data from a sequence of five experiments demonstrated that algal diet, food concentration, and veliger density significantly affected growth, attainment of metamorphic competency, and survival of Aplysia larvae. The highest growth and survival were achieved with a mixed algal diet of 1:1 Isochrysis sp (TISO) and Chaetoceros muelleri (CHGRA) at a total concentration of 250 x 10(3) cells/mL and a larval density of 0.5-1.0 per mL. Rapid growth was always correlated with faster attainment of developmental milestones and increased survival, indicating that the more rapidly growing larvae were healthier. Trials conducted with our improved protocol resulted in larval growth rates of >14 microm/day, which yielded metamorphically competent animals within 21 days with survival rates in excess of 90%. These data indicate the important effects of biotic factors on the critical larval growth period in the laboratory and show the advantages of developing optimized protocols for culture of such marine invertebrates.


Subject(s)
Animal Husbandry/methods , Aplysia/growth & development , Diet , Growth , Sexual Maturation , Animals , Larva/growth & development , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...