Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 22(4): 1031-1045, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135253

ABSTRACT

BACKGROUND: Blood clots are living tissues that release inflammatory mediators including IL-8/CXCL8 and MCP-1/CCL2. A deeper understanding of blood clots is needed to develop new therapies for prothrombotic disease states and regenerative medicine. OBJECTIVES: To identify a common transcriptional shift in cultured blood clot leukocytes. METHODS: Differential gene expression of whole blood and cultured clots (4 hours at 37 °C) was assessed by RNA sequencing (RNAseq), reverse transcriptase-polymerase chain reaction, proteomics, and histology (23 diverse healthy human donors). Cultured clot serum bioactivity was tested in endothelial barrier functional assays. RESULTS: All cultured clots developed a polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) signature, including up-regulation of OLR1 (mRNA encoding lectin-like oxidized low-density lipoprotein receptor 1 [Lox-1]), IL-8/CXCL8, CXCL2, CCL2, IL10, IL1A, SPP1, TREM1, and DUSP4/MKP. Lipopolysaccharide enhanced PMN-MDSC gene expression and specifically induced a type II interferon response with IL-6 production. Lox-1 was specifically expressed by cultured clot CD15+ neutrophils. Cultured clot neutrophils, but not activated platelets, shed copious amounts of soluble Lox-1 (sLox-1) with a donor-dependent amplitude. sLox-1 shedding was enhanced by phorbol ester and suppressed by heparin and by beta-glycerol phosphate, a phosphatase inhibitor. Cultured clot serum significantly enhanced endothelial cell monolayer barrier function, consistent with a proresolving bioactivity. CONCLUSION: This study suggests that PMN-MDSC activation is part of the innate immune response to coagulation which may have a protective role in inflammation. The cultured blood clot is an innovative thrombus model that can be used to study both sterile and nonsterile inflammatory states and could be used as a personalized medicine tool for drug screening.


Subject(s)
Myeloid-Derived Suppressor Cells , Thrombosis , Humans , Interleukin-8 , Neutrophils , Myeloid-Derived Suppressor Cells/pathology , Blood Coagulation/physiology , Thrombosis/pathology
2.
PLoS One ; 8(11): e81163, 2013.
Article in English | MEDLINE | ID: mdl-24260553

ABSTRACT

Recent studies have illustrated the importance of the microbiota in maintaining a healthy state, as well as promoting disease states. The intestinal microbiota exerts its effects primarily through its metabolites, and metabolomics investigations have begun to evaluate the diagnostic and health implications of volatile organic compounds (VOCs) isolated from human feces, enabled by specialized sampling methods such as headspace solid-phase microextraction (hSPME). The approach to stool sample collection is an important consideration that could potentially introduce bias and affect the outcome of a fecal metagenomic and metabolomic investigation. To address this concern, a comparison of endoscopically collected (in vivo) and home collected (ex vivo) fecal samples was performed, revealing slight variability in the derived microbiomes. In contrast, the VOC metabolomes differ widely between the home collected and endoscopy collected samples. Additionally, as the VOC extraction profile is hyperbolic, with short extraction durations more vulnerable to variation than extractions continued to equilibrium, a second goal of our investigation was to ascertain if hSPME-based fecal metabolomics studies might be biased by the extraction duration employed. As anticipated, prolonged extraction (18 hours) results in the identification of considerably more metabolites than short (20 minute) extractions. A comparison of the metabolomes reveals several analytes deemed unique to a cohort with the 20 minute extraction, but found common to both cohorts when the VOC extraction was performed for 18 hours. Moreover, numerous analytes perceived to have significant fold change with a 20 minute extraction were found insignificant in fold change with the prolonged extraction, underscoring the potential for bias associated with a 20 minute hSPME.


Subject(s)
Artifacts , Metabolome , Microbiota/physiology , Solid Phase Microextraction/standards , Specimen Handling/standards , Volatile Organic Compounds/isolation & purification , Adult , Feces/chemistry , Feces/microbiology , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Middle Aged , Principal Component Analysis , Solid Phase Microextraction/methods , Specimen Handling/methods , Time Factors
3.
PLoS One ; 6(4): e18471, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21494609

ABSTRACT

The diagnostic potential and health implications of volatile organic compounds (VOCs) present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME) has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein.


Subject(s)
Feces/chemistry , Metabolome , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Flame Ionization , Gas Chromatography-Mass Spectrometry , Hot Temperature , Humans , Reference Standards , Sterilization , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...