Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PhytoKeys ; 241: 65-79, 2024.
Article in English | MEDLINE | ID: mdl-38638578

ABSTRACT

The new species, Thliphthisasapphussp. nov. (Rubiaceae, Rubieae), a narrow endemic of the white cliffs of Lefkátas on the southwest coast of Lefkada (Greece) is described and illustrated and an IUCN assessment is presented. Vegetation relevés were performed at the single known locality, limestone cliffs facing the sea and revealed a new association, the Thliphthisasapphus-Lomelosietumdallaportae. The chromosome number of Thliphthisasapphus was determined as 2n = 4x = 44, being the single tetraploid species in the genus to date. The species also differs markedly morphologically from its morphologically closest relatives, two Greek steno-endemic oreophytes, Th.baenitzii and Th.muscosa by the following characters: densely setose mericarps and corolla, tetraploidy and by its distribution. An identification key for the Greek species of Thliphthisa is provided. Th.sapphus constitutes the westernmost outpost of a group of Greek steno-endemics, highlighting the importance of coastal habitats and their protection as refugia for poorly competitive chamaephytes.

2.
Glob Chang Biol ; 26(4): 2336-2352, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31994267

ABSTRACT

Climate and land-use change jointly affect the future of biodiversity. Yet, biodiversity scenarios have so far concentrated on climatic effects because forecasts of land use are rarely available at appropriate spatial and thematic scales. Agent-based models (ABMs) represent a potentially powerful but little explored tool for establishing thematically and spatially fine-grained land-use scenarios. Here, we use an ABM parameterized for 1,329 agents, mostly farmers, in a Central European model region, and simulate the changes to land-use patterns resulting from their response to three scenarios of changing socio-economic conditions and three scenarios of climate change until the mid of the century. Subsequently, we use species distribution models to, first, analyse relationships between the realized niches of 832 plant species and climatic gradients or land-use types, respectively, and, second, to project consequent changes in potential regional ranges of these species as triggered by changes in both the altered land-use patterns and the changing climate. We find that both drivers determine the realized niches of the studied plants, with land use having a stronger effect than any single climatic variable in the model. Nevertheless, the plants' future distributions appear much more responsive to climate than to land-use changes because alternative future socio-economic backgrounds have only modest impact on land-use decisions in the model region. However, relative effects of climate and land-use changes on biodiversity may differ drastically in other regions, especially where landscapes are still dominated by natural or semi-natural habitat. We conclude that agent-based modelling of land use is able to provide scenarios at scales relevant to individual species distribution and suggest that coupling ABMs with models of species' range change should be intensified to provide more realistic biodiversity forecasts.

3.
Front Plant Sci ; 9: 1556, 2018.
Article in English | MEDLINE | ID: mdl-30459786

ABSTRACT

Experimental high-throughput analysis of molecular networks is a central approach to characterize the adaptation of plant metabolism to the environment. However, recent studies have demonstrated that it is hardly possible to predict in situ metabolic phenotypes from experiments under controlled conditions, such as growth chambers or greenhouses. This is particularly due to the high molecular variance of in situ samples induced by environmental fluctuations. An approach of functional metabolome interpretation of field samples would be desirable in order to be able to identify and trace back the impact of environmental changes on plant metabolism. To test the applicability of metabolomics studies for a characterization of plant populations in the field, we have identified and analyzed in situ samples of nearby grown natural populations of Arabidopsis thaliana in Austria. A. thaliana is the primary molecular biological model system in plant biology with one of the best functionally annotated genomes representing a reference system for all other plant genome projects. The genomes of these novel natural populations were sequenced and phylogenetically compared to a comprehensive genome database of A. thaliana ecotypes. Experimental results on primary and secondary metabolite profiling and genotypic variation were functionally integrated by a data mining strategy, which combines statistical output of metabolomics data with genome-derived biochemical pathway reconstruction and metabolic modeling. Correlations of biochemical model predictions and population-specific genetic variation indicated varying strategies of metabolic regulation on a population level which enabled the direct comparison, differentiation, and prediction of metabolic adaptation of the same species to different habitats. These differences were most pronounced at organic and amino acid metabolism as well as at the interface of primary and secondary metabolism and allowed for the direct classification of population-specific metabolic phenotypes within geographically contiguous sampling sites.

4.
Nat Prod Commun ; 11(5): 585-90, 2016 May.
Article in English | MEDLINE | ID: mdl-27319123

ABSTRACT

In continuation of previous studies on glandular exudates of Primula, we analyzed eleven so far unstudied species and several populations for exudate composition. Unsubstituted flavone and unusually substituted flavones, normally predominant in Primula exudates, were not detected in all of the analyzed samples. Instead, some species exhibited regular substituted flavonoids, and in some cases, no flavonoids could be detected at all. The detection of a diterpene (1) in P. minima exudates is new to Primula. On basis of MS and NMR, 1 was structurally characterized as ent-kaur-16-en-19-oic acid. Comparative profiling of exudates as performed by HPLC and TLC against authentic markers indicated further the presence of the benzoquinone primin and derivatives in some exudates. Thus, exudates of newly studied species contrast markedly with those analyzed so far. The significance of observed exudate diversification is discussed in view of the phylogeny of derived lineages in European alpine regions.


Subject(s)
Plant Exudates/chemistry , Primula/chemistry , Diterpenes/isolation & purification , Phylogeny , Primula/genetics
5.
Food Chem ; 132(1): 201-8, 2012 May 01.
Article in English | MEDLINE | ID: mdl-26434281

ABSTRACT

Alpinia caerulea (R.Br.) Bentham, a perennial herb growing in tropical and subtropical Australia, is used as a flavouring spice and a ginger substitute. Its fruit has been used as indigenous food among the aboriginal Australians; 95% ethanol extracts of the dried fruits, leaves, rhizomes and roots of this plant were investigated in a zebrafish model by quantitative endogenous alkaline phosphatase assay. Only the fruit extract showed potential anti-angiogenic effect, inhibiting vessel formation by 25% at 20µg/ml. Two diterpenoids were isolated and identified as zerumin A and (E)-8(17),12-labdadiene-15,16-dial. Zerumin A, which had mainly accumulated in the fruits and bearing a carboxylic group, could dose-dependently inhibit vessel formation, in both wild-type and Tg(fli1a:EGFP)y1 zebrafish embryos. The semi-quantitative reverse transcription polymerase chain reaction assay on wild type zebrafish embryos suggested that zerumin A affected multiple molecular targets related to angiogenesis. Further investigation, by human umbilical vein endothelial cell assays, revealed that zerumin A specifically inhibited the proliferation and migration steps, to prevent angiogenesis progress.


Subject(s)
Alpinia/chemistry , Angiogenesis Inhibitors/pharmacology , Diterpenes/pharmacology , Angiogenesis Inhibitors/chemistry , Animals , Diterpenes/chemistry , Humans , Neovascularization, Physiologic/drug effects , Zebrafish
6.
Alp Bot ; 121(2)2011 Oct 01.
Article in English | MEDLINE | ID: mdl-24348456

ABSTRACT

Hexaploid individuals of Senecio carniolicus (Asteraceae) predominantly occur in dense swards while diploids prevail in open vegetation. We test whether this habitat segregation is due to differential responses to competition. Linear regression models were used to relate biomass and maximum leaf length of adults to vegetation cover within radii of 20 cm around target individuals. Biomass differed between ploidy levels, but was independent from vegetation cover in both cytotypes. Maximum leaf length of diploids increased with vegetation cover, but remained constant in hexaploids. This suggests that at the adult stage diploids respond to increasing competition by changes in plant architecture rather than changes in resource utilization, while hexaploids are unaffected by competition. Consequently, other factors, such as competitive interactions at earlier life stages, likely are responsible for habitat segregation of diploid and hexaploid S. carniolicus.

SELECTION OF CITATIONS
SEARCH DETAIL
...