Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Neurol Neuroimmunol Neuroinflamm ; 11(2): e200200, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346270

ABSTRACT

BACKGROUND AND OBJECTIVES: Multiple sclerosis (MS) is a heterogeneous disease, and its course is difficult to predict. Prediction models can be established by measuring intrathecally synthesized proteins involved in inflammation, glial activation, and CNS injury. METHODS: To determine how these intrathecal proteins relate to the short-term, i.e., 12 months, disease activity in relapsing-remitting MS (RRMS), we measured the intrathecal synthesis of 46 inflammatory mediators and 14 CNS injury or glial activation markers in matched serum and CSF samples from 47 patients with MS (pwMS), i.e., 23 RRMS and 24 clinically isolated syndrome (CIS), undergoing diagnostic lumbar puncture. Subsequently, all pwMS were followed for ≥12 months in a retrospective follow-up study and ultimately classified into "active", i.e., developing clinical and/or radiologic disease activity, n = 18) or "nonactive", i.e., not having disease activity, n = 29. Disease activity in patients with CIS corresponded to conversion to RRMS. Thus, patients with CIS were subclassified as "converters" or "nonconverters" based on their conversion status at the end of a 12-month follow-up. Twenty-seven patients with noninflammatory neurologic diseases were included as negative controls. Data were subjected to differential expression analysis and modeling techniques to define the connectivity arrangement (network) between neuroinflammation and CNS injury relevant to short-term disease activity in RRMS. RESULTS: Lower age and/or higher CXCL13 levels positively distinguished active/converting vs nonactive/nonconverting patients. Network analysis significantly improved the prediction of short-term disease activity because active/converting patients featured a stronger positive connection between IgG1 and CXCL10. Accordingly, analysis of disease activity-free survival demonstrated that pwMS, both RRMS and CIS, with a lower or negative IgG1-CXCL10 correlation, have a higher probability of activity-free survival than the patients with a significant correlation (p < 0.0001, HR ≥ 2.87). DISCUSSION: Findings indicate that a significant IgG1-CXCL10 positive correlation predicts the risk of short-term disease activity in patients with RRMS and CIS. Thus, the present results can be used to develop a predictive model for MS activity and conversion to RRMS.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnosis , Follow-Up Studies , Immunoglobulin G , Retrospective Studies , Biomarkers , Chemokine CXCL10
2.
NPJ Parkinsons Dis ; 10(1): 21, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212355

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease in the United States. Decades before motor symptoms manifest, non-motor symptoms such as hyposmia and rapid eye movement (REM) sleep behavior disorder are highly predictive of PD. Previous immune profiling studies have identified alterations to the proportions of immune cells in the blood of clinically defined PD patients. However, it remains unclear if these phenotypes manifest before the clinical diagnosis of PD. We utilized longitudinal DNA methylation (DNAm) microarray data from the Parkinson's Progression Marker's Initiative (PPMI) to perform immune profiling in clinically defined PD and prodromal PD patients (Prod). We identified previously reported changes in neutrophil, monocyte, and T cell numbers in PD patients. Additionally, we noted previously unrecognized decreases in the naive B cell compartment in the defined PD and Prod patient group. Over time, we observed the proportion of innate immune cells in PD blood increased, but the proportion of adaptive immune cells decreased. We identified decreases in T and B cell subsets associated with REM sleep disturbances and early cognitive decline. Lastly, we identified increases in B memory cells associated with both genetic (LRRK2 genotype) and infectious (cytomegalovirus seropositivity) risk factors of PD. Our analysis shows that the peripheral immune system is dynamic as the disease progresses. The study provides a platform to understand how and when peripheral immune alterations occur in PD and whether intervention at particular stages may be therapeutically advantageous.

3.
BMC Med Imaging ; 23(1): 183, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957588

ABSTRACT

BACKGROUND: There is a lack of understanding of the mechanisms by which the CNS is injured in multiple sclerosis (MS). Since Theiler's murine encephalomyelitis virus (TMEV) infection in SJL/J mice is an established model of progressive disability in MS, and CNS atrophy correlates with progressive disability in MS, we used in vivo MRI to quantify total ventricular volume in TMEV infection. We then sought to identify immunological and virological biomarkers that correlated with increased ventricular size. METHODS: Mice, both infected and control, were followed for 6 months. Cerebral ventricular volumes were determined by MRI, and disability was assessed by Rotarod. A range of immunological and virological measures was obtained using standard techniques. RESULTS: Disability was present in infected mice with enlarged ventricles, while infected mice without enlarged ventricles had Rotarod performance similar to sham mice. Ventricular enlargement was detected as soon as 1 month after infection. None of the immunological and virological measures correlated with the development of ventricular enlargement. CONCLUSIONS: These results support TMEV infection with brain MRI monitoring as a useful model for exploring the biology of disability progression in MS, but they did not identify an immunological or virological correlate with ventricular enlargement.


Subject(s)
Multiple Sclerosis , Mice , Animals , Brain/pathology , Magnetic Resonance Imaging , Atrophy/diagnostic imaging , Disease Models, Animal
4.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446228

ABSTRACT

Multiple sclerosis (MS) is a clinically heterogenous disease. Currently, we cannot identify patients with more active disease who may potentially benefit from earlier interventions. Previous data from our lab identified the CXCL13 index (ICXCL13), a measure of intrathecal production of CXCL13, as a potential biomarker to predict future disease activity in MS patients two years after diagnosis. Patients with clinically isolated syndrome (CIS) or radiologically isolated syndrome (RIS) underwent a lumbar puncture and blood draw, and the ICXCL13 was determined. They were then followed for at least 5 years for MS activity. Patients with high ICXCL13 were more likely to convert to clinically definite MS (82.4%) compared to those with low ICXCL13 (10.0%). The data presented below demonstrate that this predictive ability holds true in CIS and RIS patients, and for at least five years compared to our initial two-year follow-up study. These data support the concept that ICXCL13 has the potential to be used to guide immunomodulatory therapy in MS.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Humans , Follow-Up Studies , Magnetic Resonance Imaging , Multiple Sclerosis/diagnosis , Biomarkers , Disease Progression , Chemokine CXCL13
5.
J Neurosci Res ; 101(8): 1259-1274, 2023 08.
Article in English | MEDLINE | ID: mdl-37001997

ABSTRACT

Given that multiple sclerosis (MS) is a complex disease with an unclear etiology, a single animal model is unlikely to accurately represent all aspects of pathology and clinical features of the human condition. However, the availability of three major types of murine models of MS, that is, experimental autoimmune encephalomyelitis (EAE), viral models, and toxic models, enables studies of several relevant features of this debilitating disease. Researchers have recently begun to combine magnetic resonance imaging (MRI) technologies with other experimental strategies to acquire complementary information, for example, anatomical and functional, and study the effect of experimental manipulations longitudinally in a noninvasive way. This review summarizes the latest MRI studies investigating critical aspects of MS, such as atrophy, demyelination, neuroaxonal damage, and neuroinflammation, in mouse models of MS. Advanced techniques will be briefly discussed, providing references to specialized literature for the readers. Thus, this review aims to describe different imaging protocols used to study critical aspects of MS in a research laboratory, discussing the main related findings in the most significant murine models of the disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Mice , Humans , Animals , Multiple Sclerosis/etiology , Disease Models, Animal , Magnetic Resonance Imaging , Atrophy
6.
Front Mol Neurosci ; 15: 1019799, 2022.
Article in English | MEDLINE | ID: mdl-36311024

ABSTRACT

Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease of unknown etiology. However, several studies suggest that infectious agents, e.g., Human Herpes Viruses (HHV), may be involved in triggering the disease. Molecular mimicry, bystander effect, and epitope spreading are three mechanisms that can initiate immunoreactivity leading to CNS autoimmunity in MS. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD) is a pre-clinical model of MS in which intracerebral inoculation of TMEV results in a CNS autoimmune disease that causes demyelination, neuroaxonal damage, and progressive clinical disability. Given the spectra of different murine models used to study MS, this review highlights why TMEV-IDD represents a valuable tool for testing the viral hypotheses of MS. We initially describe how the main mechanisms of CNS autoimmunity have been identified across both MS and TMEV-IDD etiology. Next, we discuss how adaptive, innate, and CNS resident immune cells contribute to TMEV-IDD immunopathology and how this relates to MS. Lastly, we highlight the sexual dimorphism observed in TMEV-IDD and MS and how this may be tied to sexually dimorphic responses to viral infections. In summary, TMEV-IDD is an underutilized murine model that recapitulates many unique aspects of MS; as we learn more about the nature of viral infections in MS, TMEV-IDD will be critical in testing the future therapeutics that aim to intervene with disease onset and progression.

7.
Front Immunol ; 13: 924734, 2022.
Article in English | MEDLINE | ID: mdl-35958570

ABSTRACT

Multiple sclerosis (MS) is a neurological disease featuring neuroinflammation and neurodegeneration in young adults. So far, most research has focused on the peripheral immune system, which appears to be the driver of acute relapses. Concurrently, the mechanisms underlying neurodegeneration in the progressive forms of the disease remain unclear. The complement system, a molecular component of the innate immunity, has been recently implicated in several neurological disorders, including MS. However, it is still unknown if the complement proteins detected in the central nervous system (CNS) are actively involved in perpetuating chronic inflammation and neurodegeneration. To address this knowledge gap, we compared two clinically distinct mouse models of MS: 1) proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (rEAE) resembling a relapsing-remitting disease course, and 2) Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) resembling a progressive disease. Real-time PCR was performed in the spinal cord of rEAE mice, TMEV-IDD mice and age-matched sham controls to quantify gene expression for a broad range of complement components. In both experimental models, we found significantly increased expression of complement factors, such as C1q, C3, CfB, and C3aR. We showed that the complement system, specifically the classical complement pathway, was associated with TMEV-IDD pathogenesis, as the expression of C1q, C3 and C3aR1 were all significantly correlated to a worse disease outcome (all P≤0.0168). In line with this finding, C1q and C3 deposition was observed in the spinal cord of TMEV-IDD mice. Furthermore, C1q deposition was detected in spinal cord regions characterized by inflammation, demyelination, and axonal damage. Conversely, activation of the classical complement cascade seemed to result in protection from rEAE (C1q: P=0.0307). Interestingly, the alternative pathway related to a worse disease outcome in rEAE (CFb: P=0.0006). Overall, these results indicate potential divergent roles for the complement system in MS. The chronic-progressive disease form is more reliant on the activation of the classic complement pathway, while protecting from acute relapses. Conversely, relapsing MS appears more likely affected by the alternative pathway. Understanding the functions of the complement system in MS is critical and can lead to better, more targeted therapies in the future.


Subject(s)
Multiple Sclerosis , Theilovirus , Animals , Complement C1q , Disease Models, Animal , Inflammation , Mice , Recurrence
9.
Front Immunol ; 12: 676686, 2021.
Article in English | MEDLINE | ID: mdl-34168647

ABSTRACT

Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Once thought to be primarily driven by T cells, B cells are emerging as central players in MS immunopathogenesis. Interest in multiple B cell phenotypes in MS expanded following the efficacy of B cell-depleting agents targeting CD20 in relapsing-remitting MS and inflammatory primary progressive MS patients. Interestingly, these therapies primarily target non-antibody secreting cells. Emerging studies seek to explore B cell functions beyond antibody-mediated roles, including cytokine production, antigen presentation, and ectopic follicle-like aggregate formation. Importantly, memory B cells (Bmem) are rising as a key B cell phenotype to investigate in MS due to their antigen-experience, increased lifespan, and rapid response to stimulation. Bmem display diverse effector functions including cytokine production, antigen presentation, and serving as antigen-experienced precursors to antibody-secreting cells. In this review, we explore the cellular and molecular processes involved in Bmem development, Bmem phenotypes, and effector functions. We then examine how these concepts may be applied to the potential role(s) of Bmem in MS pathogenesis. We investigate Bmem both within the periphery and inside the CNS compartment, focusing on Bmem phenotypes and proposed functions in MS and its animal models. Finally, we review how current immunomodulatory therapies, including B cell-directed therapies and other immunomodulatory therapies, modify Bmem and how this knowledge may be harnessed to direct therapeutic strategies in MS.


Subject(s)
Antibodies, Monoclonal, Humanized/biosynthesis , Antigen Presentation , B-Lymphocytes/immunology , Cytokines/biosynthesis , Immunologic Memory , Multiple Sclerosis, Relapsing-Remitting/immunology , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD20/immunology , Central Nervous System/immunology , Disease Models, Animal , Humans , Immunologic Factors/therapeutic use , Immunomodulation , Inflammation/immunology , Multiple Sclerosis, Relapsing-Remitting/therapy , Phenotype
10.
Fluids Barriers CNS ; 18(1): 9, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33632258

ABSTRACT

Pilz et al. (Fluids Barriers CNS 17:7; 2020) investigated how CSF CXCL13 concentrations are influenced by CXCL13 serum concentrations and blood-CSF barrier (BCSFB) function, comparing the impact of serum CXCL13 levels and Qalbumin (CSF albumin/serum albumin) on CSF CXCL13 among patients with CNS inflammation categorized as CXCL13 negative, low, medium, or high. Among all CXCL13 groups, their results showed no correlation between CSF CXCL13 concentrations and serum CXCL13 or Qalbumin. The authors argue that, in contrast to other proteins, CXCL13 passage across the BCSFB does not occur, regardless of BCSFB function, and is instead solely influenced by intrathecal production. In contrast to the authors' findings, in our studies including both non-inflammatory neurological disorders (NIND; n = 62) and multiple sclerosis (MS) patients we observed a significant correlation between serum CXCL13 concentrations and CSF CXCL13 concentrations. We review several observations which may underlie these contrasting results, including (1) the impact of serum CXCL13 concentrations on CSF CXCL13 in patients with lower intrathecal CXCL13 production and thus lower CXCL13 concentrations (i.e. NIND and MS), (2) the proposed diffusion dynamics of the small molecule CXCL13 across the BCSFB, and (3) differing definitions of negative versus elevated CSF CXCL13 concentrations determined by an assay's relative sensitivity. In conclusion, we argue that for patients with moderately elevated CSF CXCL13 concentrations, serum CXCL13 concentrations influence CSF CXCL13 levels, and thus the appropriate corrections including incorporation of CSF/serum ratios and Qalbumin values should be utilized.


Subject(s)
Multiple Sclerosis , Nervous System Diseases , Chemokine CXCL13 , Humans , Inflammation
11.
Front Neurol ; 11: 616, 2020.
Article in English | MEDLINE | ID: mdl-32719651

ABSTRACT

Multiple sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). An interesting feature that this debilitating disease shares with many other inflammatory disorders is that susceptibility is higher in females than in males, with the risk of MS being three times higher in women compared to men. Nonetheless, while men have a decreased risk of developing MS, many studies suggest that males have a worse clinical outcome. MS exhibits an apparent sexual dimorphism in both the immune response and the pathophysiology of the CNS damage, ultimately affecting disease susceptibility and progression differently. Overall, women are predisposed to higher rates of inflammatory relapses than men, but men are more likely to manifest signs of disease progression and worse CNS damage. The observed sexual dimorphism in MS may be due to sex hormones and sex chromosomes, acting in parallel or combination. In this review, we outline current knowledge on the sexual dimorphism in MS and discuss the interplay of sex chromosomes, sex hormones, and the immune system in driving MS disease susceptibility and progression.

12.
J Vis Exp ; (159)2020 05 19.
Article in English | MEDLINE | ID: mdl-32510499

ABSTRACT

The central nervous system (CNS) is comprised of the brain and spinal cord and is enveloped by the meninges, membranous layers serving as a barrier between the periphery and the CNS. The CNS is an immunologically specialized site, and in steady state conditions, immune privilege is most evident in the CNS parenchyma. In contrast, the meninges harbor a diverse array of resident cells, including innate and adaptive immune cells. During inflammatory conditions triggered by CNS injury, autoimmunity, infection, or even neurodegeneration, peripherally derived immune cells may enter the parenchyma and take up residence within the meninges. These cells are thought to perform both beneficial and detrimental actions during CNS disease pathogenesis. Despite this knowledge, the meninges are often overlooked when analyzing the CNS compartment, because conventional CNS tissue extraction methods omit the meningeal layers. This protocol presents two distinct methods for the rapid isolation of murine CNS tissues (i.e., brain, spinal cord, and meninges) that are suitable for downstream analysis via single-cell techniques, immunohistochemistry, and in situ hybridization methods. The described methods provide a comprehensive analysis of CNS tissues, ideal for assessing the phenotype, function, and localization of cells occupying the CNS compartment under homeostatic conditions and during disease pathogenesis.


Subject(s)
Central Nervous System/cytology , Central Nervous System/immunology , Meninges/cytology , Meninges/immunology , Animals , Brain/cytology , Brain/immunology , Cell Aggregation , Cryopreservation , Demyelinating Diseases/pathology , Demyelinating Diseases/virology , Female , Leukocyte Common Antigens/metabolism , Mice , Paraffin Embedding , Spinal Cord/cytology , Spinal Cord/immunology , Theilovirus/physiology , Tissue Fixation
13.
Mult Scler J Exp Transl Clin ; 6(4): 2055217320981396, 2020.
Article in English | MEDLINE | ID: mdl-33403120

ABSTRACT

BACKGROUND: Clinicians caring for patients with Multiple Sclerosis (MS) need improved biomarkers to aid them in disease management. OBJECTIVE: We assessed the predictive value of the candidate biomarker CXCL13 index in comparison to oligoclonal bands (OCBs) and CSF neurofilament light (NfL) concentration, examining the ability of each biomarker to predict future disease activity in clinically and radiologically isolated syndromes, relapsing-remitting MS, and progressive MS. METHODS: Matched serum and CSF samples were obtained from 67 non-inflammatory neurologic disease patients and 67 MS patients. CSF and serum CXCL13 and CSF NfL were analyzed by Luminex and ELISA, respectively. CXCL13 data were also analyzed as CSF/serum ratios and indices. Electronic medical records were accessed to determine diagnosis, CSF profiles, and disease activity after the lumbar puncture. RESULTS: Among CXCL13 measures, CXCL13 index was the best predictor of future disease activity in MS patients (AUC = 0.82; CI = 0.69-0.95; p = 0.0002). CXCL13 index values were significantly elevated in activity-positive MS patients compared to activity-negative patients (p < 0.0001). As a single predictor, CXCL13 index outperformed both OCBs and CSF NfL in sensitivity, specificity, and positive and negative predictive value, for future disease activity in MS patients. Moreover, combining CXCL13 index and CSF NfL status improved sensitivity and predictive values for disease activity in MS patients. CONCLUSIONS: The CXCL13 index is an excellent candidate prognostic biomarker for disease activity in patients with MS.

14.
J Vis Exp ; (153)2019 11 29.
Article in English | MEDLINE | ID: mdl-31840664

ABSTRACT

Cerebrospinal fluid (CSF), a fluid found in the brain and the spinal cord, is of great importance to both basic and clinical science. The analysis of the CSF protein composition delivers crucial information in basic neuroscience research as well as neurological diseases. One caveat is that proteins measured in CSF may derive from both intrathecal synthesis and transudation from serum, and protein analysis of CSF can only determine the sum of these two components. To discriminate between protein transudation from the blood and intrathecally produced proteins in animal models as well as in humans, CSF protein profiling measurements using conventional protein analysis tools must include the calculation of the albumin CSF/serum quotient (Qalbumin), a marker of the integrity of the blood-brain interface (BBI), and the protein index (Qprotein/Qalbumin), an estimate of intrathecal protein synthesis. This protocol illustrates the entire procedure, from CSF and blood collection to quotients and indices calculations, for the quantitative measurement of intrathecal protein synthesis and BBI impairment in mouse models of neurological disorders.


Subject(s)
Cerebrospinal Fluid Proteins/chemistry , Cerebrospinal Fluid Proteins/metabolism , Albumins/cerebrospinal fluid , Albumins/chemistry , Albumins/metabolism , Animals , Biomarkers/cerebrospinal fluid , Humans , Mice , Serum Albumin , Specimen Handling
15.
Front Immunol ; 10: 1821, 2019.
Article in English | MEDLINE | ID: mdl-31428102

ABSTRACT

Persistent central nervous system (CNS) inflammation, as seen in chronic infections or inflammatory demyelinating diseases such as Multiple Sclerosis (MS), results in the accumulation of various B cell subsets in the CNS, including naïve, activated, memory B cells (Bmem), and antibody secreting cells (ASC). However, factors driving heterogeneous B cell subset accumulation and antibody (Ab) production in the CNS compartment, including the contribution of ectopic lymphoid follicles (ELF), during chronic CNS inflammation remain unclear and is a major gap in our understanding of neuroinflammation. We sought to address this gap using the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of progressive MS. In this model, injection of the virus into susceptible mouse strains results in a persistent infection associated with demyelination and progressive disability. During chronic infection, the predominant B cell phenotypes accumulating in the CNS were isotype-switched B cells, including Bmem and ASC with naïve/early activated and transitional B cells present at low frequencies. B cell accumulation in the CNS during chronic TMEV-IDD coincided with intrathecal Ab synthesis in the cerebrospinal fluid (CSF). Mature and isotype-switched B cells predominately localized to the meninges and perivascular space, with IgG isotype-switched B cells frequently accumulating in the parenchymal space. Both mature and isotype-switched B cells and T cells occupied meningeal and perivascular spaces, with minimal evidence for spatial organization typical of ELF mimicking secondary lymphoid organs (SLO). Moreover, immunohistological analysis of immune cell aggregates revealed a lack of SLO-like ELF features, such as cell proliferation, cell death, and germinal center B cell markers. Nonetheless, flow cytometric assessment of B cells within the CNS showed enhanced expression of activation markers, including moderate upregulation of GL7 and expression of the costimulatory molecule CD80. B cell-related chemokines and trophic factors, including APRIL, BAFF, CXCL9, CXCL10, CCL19, and CXCL13, were elevated in the CNS. These results indicate that localization of heterogeneous B cell populations, including activated and isotype-switched B cell phenotypes, to the CNS and intrathecal Ab (ItAb) synthesis can occur independently of SLO-like follicles during chronic inflammatory demyelinating disease.


Subject(s)
Central Nervous System/immunology , Inflammation/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Theilovirus/immunology , Animals , Antibody Formation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biomarkers/metabolism , Central Nervous System/metabolism , Central Nervous System/virology , Demyelinating Diseases/immunology , Demyelinating Diseases/metabolism , Demyelinating Diseases/virology , Disease Models, Animal , Female , Germinal Center/immunology , Germinal Center/metabolism , Germinal Center/virology , Immunoglobulin G/immunology , Inflammation/metabolism , Inflammation/virology , Mice , Multiple Sclerosis/metabolism
16.
J Neuroinflammation ; 16(1): 109, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31118079

ABSTRACT

BACKGROUND: The mechanisms driving multiple sclerosis (MS), the most common cause of non-traumatic disability in young adults, remain unknown despite extensive research. Especially puzzling are the underlying molecular processes behind the two major disease patterns of MS: relapsing-remitting and progressive. The relapsing-remitting course is exemplified by acute inflammatory attacks, whereas progressive MS is characterized by neurodegeneration on a background of mild-moderate inflammation. The molecular and cellular features differentiating the two patterns are still unclear, and the role of inflammation during progressive disease is a subject of active debate. METHODS: We performed a comprehensive analysis of the intrathecal inflammation in two clinically distinct mouse models of MS: the PLP139-151-induced relapsing experimental autoimmune encephalomyelitis (R-EAE) and the chronic progressive, Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Microarray technology was first used to examine global gene expression changes in the spinal cord. Inflammation in the spinal cord was further assessed by immunohistochemical image analysis and flow cytometry. Levels of serum and cerebrospinal fluid (CSF) immunoglobulin (Ig) isotypes and chemokines were quantitated using Luminex Multiplex technology, whereas a capture ELISA was used to measure serum and CSF albumin levels. Finally, an intrathecal Ig synthesis index was established with the ratio of CSF and serum test results corrected as a ratio of their albumin concentrations. RESULTS: Microarray analysis identified an enrichment of B cell- and Ig-related genes upregulated in TMEV-IDD mice. We also demonstrated an increased level of intrathecal Ig synthesis as well as a marked infiltration of late differentiated B cells, including antibody secreting cells (ASC), in the spinal cord of TMEV-IDD, but not R-EAE mice. An intact blood-brain barrier in TMEV-IDD mice along with higher CSF levels of CXCL13, CXCL12, and CCL19 provides evidence for an intrathecal synthesis of chemokines mediating B cell localization to the central nervous system (CNS). CONCLUSIONS: Overall, these findings, showing increased concentrations of intrathecally produced Igs, substantial infiltration of ASC, and the presence of B cell supporting chemokines in the CNS of TMEV-IDD mice, but not R-EAE mice, suggest a potentially important role for Igs and ASC in the chronic progressive phase of demyelinating diseases.


Subject(s)
Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Spinal Cord/immunology , Theilovirus/immunology , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice , Multiple Sclerosis/pathology , Spinal Cord/pathology
17.
Neurol Neuroimmunol Neuroinflamm ; 6(1): e520, 2019 01.
Article in English | MEDLINE | ID: mdl-30568998

ABSTRACT

Objective: We sought to develop molecular biomarkers of intrathecal inflammation to assist neurologists in identifying patients most likely to benefit from a range of immune therapies. Methods: We used Luminex technology and index determination to search for an inflammatory activity molecular signature (IAMS) in patients with inflammatory demyelinating disease (IDD), other neuroinflammatory diagnoses, and noninflammatory controls. We then followed the clinical characteristics of these patients to find how the presence of the signature might assist in diagnosis and prognosis. Results: A CSF molecular signature consisting of elevated CXCL13, elevated immunoglobulins, normal albumin CSF/serum ratio (Qalbumin), and minimal elevation of cytokines other than CXCL13 provided diagnostic and prognostic value; absence of the signature in IDD predicted lack of subsequent inflammatory events. The signature outperformed oligoclonal bands, which were frequently false positive for active neuroinflammation. Conclusions: A CSF IAMS may prove useful in the diagnosis and management of patients with IDD and other neuroinflammatory syndromes. Classification of evidence: This study provides Class IV evidence that a CSF IAMS identifies patients with IDD.


Subject(s)
Demyelinating Diseases/cerebrospinal fluid , Demyelinating Diseases/diagnosis , Myelitis/cerebrospinal fluid , Myelitis/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Albumins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Chemokine CXCL13/cerebrospinal fluid , Cytokines/cerebrospinal fluid , Demyelinating Diseases/complications , Encephalitis/cerebrospinal fluid , Encephalitis/complications , Encephalitis/diagnosis , Female , Humans , Immunoglobulins/cerebrospinal fluid , Male , Middle Aged , Myelitis/complications , Young Adult
18.
Int Immunopharmacol ; 62: 1-6, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29960044

ABSTRACT

Because PEGylated molecules exhibit different physicochemical properties from those of the parent molecules, PEGylated interferonß-1a (pegIFNß-1a) may be able to be used with retained bioactivity in Multiple Sclerosis (MS) patients who have previously developed neutralizing antibodies (NABs) to recombinant interferonß (rIFNß). Hence, the objective of the present study was to test whether pegIFNß-1a is less antigenic for NABs in vitro than rIFNß. Two in vitro assays were used to quantitate NABs in 115 sera obtained from MS patients included in the INSIGHT study: the cytopathic effect (CPE) assay, and the MxA protein induction assay. NABs cross-reactivity was assessed by comparing dilutions of serum with fixed doses of rIFNß-1a Avonex® and pegIFNß-1a Plegridy®. NABs were shown to cross-react in both assays. The y-intercept (c), the slope of the line of agreement (b), the Pearson coefficients as well as the Bland-Altman analysis, indicated that there is good level of agreement between NAB titers against the two IFNß-1a formulations, with both the CPE (c = 0.1044 ±â€¯0.1305; b = 0.8438 ±â€¯0.06654; r2 = 0.587; bias index ±â€¯SD = -0.01702 ±â€¯0.6334), and the MxA protein induction (c = 0.08246 ±â€¯0.1229; b = 0.8878 ±â€¯0.06613; r2 = 0.615; bias index ±â€¯SD = -0.09965 ±â€¯0.6467) assays. Until further in vivo evidence is established, clinicians should consider the current in vitro data demonstrating NAB cross-reactivity between pegIFNß-1a and rIFNß when discussing new treatment options with MS patients.


Subject(s)
Antibodies, Neutralizing/blood , Interferon-beta/immunology , Multiple Sclerosis/blood , Recombinant Proteins/immunology , A549 Cells , Biological Assay , Cross Reactions , Cytopathogenic Effect, Viral , Encephalomyocarditis virus/immunology , Humans , Multiple Sclerosis/immunology , Myxovirus Resistance Proteins/biosynthesis , Neutralization Tests , Polyethylene Glycols
19.
J Neuroimmunol ; 313: 34-40, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29153606

ABSTRACT

We evaluated the effects of pegylated-interferonß-1a (pegIFNß) therapy on intrathecal antibody responses, disability progression, and viral load in the CNS in mice infected with the Theiler's virus (TMEV), an animal model of progressive disability in Multiple Sclerosis (MS). The lack of a direct antiviral activity in the CNS, the absence of any effect upon the intrathecal immune response, and the failure to treat disease progression, indicate that the immunomodulatory effects of pegIFNß-1a likely occur in the systemic circulation rather than within the CNS. These results may be relevant to the relative lack of effect of IFNß in progressive MS relative to relapsing MS.


Subject(s)
Immunologic Factors/therapeutic use , Interferon-beta/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/virology , Theilovirus/pathogenicity , Animals , Antibodies, Viral/blood , Disability Evaluation , Disease Models, Animal , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Mice , RNA, Messenger/metabolism , Rotarod Performance Test , Statistics, Nonparametric , Theilovirus/immunology , Viral Load
20.
J Neurovirol ; 23(6): 825-838, 2017 12.
Article in English | MEDLINE | ID: mdl-28913765

ABSTRACT

Teriflunomide is an oral therapy approved for the treatment of relapsing remitting multiple sclerosis (MS), showing both anti-inflammatory and antiviral properties. Currently, it is uncertain whether one or both of these properties may explain teriflunomide's beneficial effect in MS. Thus, to learn more about its mechanisms of action, we evaluated the effect of teriflunomide in the Theiler's encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model, which is both a viral infection and an excellent model of the progressive disability of MS. We assessed the effects of the treatment on central nervous system (CNS) viral load, intrathecal immune response, and progressive neurological disability in mice intracranially infected with TMEV. In the TMEV-IDD model, we showed that teriflunomide has both anti-inflammatory and antiviral properties, but there seemed to be no impact on disability progression and intrathecal antibody production. Notably, benefits in TMEV-IDD were mostly mediated by effects on various cytokines produced in the CNS. Perhaps the most interesting result of the study has been teriflunomide's antiviral activity in the CNS, indicating it may have a role as an antiviral prophylactic and therapeutic compound for CNS viral infections.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , Cardiovirus Infections/drug therapy , Crotonates/pharmacology , Multiple Sclerosis/drug therapy , Toluidines/pharmacology , Animals , Antibodies, Viral/biosynthesis , Cardiovirus Infections/immunology , Cardiovirus Infections/virology , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Disease Models, Animal , Disease Progression , Female , Hydroxybutyrates , Injections, Intraperitoneal , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Nitriles , Theilovirus/drug effects , Theilovirus/growth & development , Theilovirus/immunology , Viral Load/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...