Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 35(6): 2026-42, 2006.
Article in English | MEDLINE | ID: mdl-17071872

ABSTRACT

The N simulation model, DRAINMOD-N II, was field-tested using a 6-yr data set from an artificially drained agricultural site located in eastern North Carolina. The test site is on a nearly flat sandy loam soil which is very poorly drained under natural conditions. Four experimental plots, planted to a corn (Zea mays)-wheat (Triticum aestivum L.)-soybean (Glycine max.) rotation and managed using conventional and controlled drainage, were used in model testing. Water table depth, subsurface drainage, and N concentration in drain flow were measured and meteorological data were recorded continuously. DRAINMOD-N II was calibrated using the data from one plot; data sets from the other three plots were used for model validation. Simulation results showed an excellent agreement between observed and predicted nitrate-nitrogen (NO(3)-N) losses in drainage water over the 6-yr period and a reasonable agreement on an annual basis. The agreement on a monthly basis was not as good. The Nash-Sutcliffe modeling efficiency (EF) for monthly predictions was 0.48 for the calibration plot and 0.19, 0.01, and -0.02 for the validation plots. The value of the EF for yearly predictions was 0.92 for the calibration plot and 0.73, 0.62, and -0.10 for the validation plots. Errors in predicting cumulative NO(3)-N losses over the 6-yr period were remarkably small; -1.3% for the calibration plot, -8.1%, -2.8%, and 4.0% for the validation plots. Results of this study showed the potential of DRAINMOD-N II for predicting N losses from drained agricultural lands. Further research is needed to test the model for different management practices and soil and climatological conditions.


Subject(s)
Agriculture , Environmental Monitoring , Nitrogen/analysis , Soil Pollutants/analysis , Water Pollutants/analysis , Water Supply , Calibration , Fertilizers , Forecasting , Models, Biological , Nitrates/analysis , North Carolina , Glycine max , Time Factors , Triticum , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...