Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 7(1): 316-29, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23214719

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used experimentally and also clinically tested in diverse areas of biology and medicine. Applications include magnetic resonance imaging, cell sorting, drug delivery, and hyperthermia. Physicochemical surface properties are particularly relevant in the context of achieving high colloidal nanoparticle (NP) stability and preventing agglomeration (particularly challenging in biological fluids), increasing blood circulation time, and possibly targeting specific cells or tissues through the presentation of bioligands. Traditionally, NP surfaces are sterically stabilized with hydrophilic polymeric matrices, such as dextran or linear poly(ethylene glycol) brushes. While dendrimers have found applications as drug carriers, dispersants with dendritic ("dendrons") or hyperbranched structures have been comparatively neglected despite their unique properties, such as a precisely defined molecular structure and the ability to present biofunctionalities at high density at the NP periphery. This work covers the synthesis of SPIONs and their stabilization based on poly(ethylene glycol) (PEG) and oligo(ethylene glycol) (OEG) chemistry and compares the physicochemical properties of NPs stabilized with linear and dendritic macromolecules of comparable molecular weight. The results highlight the impact of the polymeric interface architecture on solubility, colloidal stability, hydrodynamic radius, and thermoresponsive behavior. Dendron-stabilized NPs were found to provide excellent colloidal stability, despite a smaller hydrodynamic radius and lower degree of soft shell hydration compared to linear PEG analogues. Moreover, for the same grafting density and molecular weight of the stabilizers, OEG dendron-stabilized NPs show a reversible temperature-induced aggregation behavior, in contrast to the essentially irreversible aggregation and sedimentation observed for the linear PEG analogues. This new class of dendritically stabilized NPs is believed to have a potential for future biomedical and other applications, in which stability, resistance to (or reversible) aggregation, ultrasmall size (for crossing biological barriers or inclusion in responsive artificial membranes), and/or high corona density of (bio)active ligands are key.


Subject(s)
Dextrans/chemistry , Magnetite Nanoparticles/chemistry , Nanocapsules/chemistry , Nanocapsules/ultrastructure , Polyethylene Glycols/chemistry , Colloids/chemistry , Contrast Media/chemistry , Crystallization/methods , Dendrimers , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties , Temperature
2.
J Am Chem Soc ; 133(28): 10940-50, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21634791

ABSTRACT

This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.


Subject(s)
Biofouling/prevention & control , Catechols/chemistry , Dendrimers/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Titanium/chemistry , Adsorption , Kinetics , Optical Phenomena , Spectrum Analysis , Surface Properties
3.
Nano Lett ; 9(12): 4042-8, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19835370

ABSTRACT

We have found catechol-derivative anchor groups which possess irreversible binding affinity to iron oxide and thus can optimally disperse superparamagnetic nanoparticles under physiologic conditions. This not only leads to ultrastable iron oxide nanoparticles but also allows close control over the hydrodynamic diameter and interfacial chemistry. The latter is a crucial breakthrough to assemble functionalized magnetic nanoparticles, e.g., as targeted magnetic resonance contrast agents.


Subject(s)
Catechols/chemistry , Crystallization/methods , Iron/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Macromolecular Substances/chemistry , Magnetics , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Suspensions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...