Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 95(1): 247-54, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15596472

ABSTRACT

BACKGROUND AND AIMS: The overall goal of this paper is to construct an overview of the genetic basis for flower size evolution in Silene latifolia. It aims to examine the relationship between the molecular bases for flower size and the underlying assumption of quantitative genetics theory that quantitative variation is ultimately due to the impact of a number of structural genes. SCOPE: Previous work is reviewed on the quantitative genetics and potential for response to selection on flower size, and the relationship between flower size and nuclear DNA content in S. latifolia. These earlier findings provide a framework within which to consider more recent analyses of a joint quantitative trait loci (QTL) analysis of flower size and DNA content in this species. KEY RESULTS: Flower size is a character that fits the classical quantitative genetics model of inheritance very nicely. However, an earlier finding that flower size is correlated with nuclear DNA content suggested that quantitative aspects of genome composition rather than allelic substitution at structural loci might play a major role in the evolution of flower size. The present results reported here show that QTL for flower size are correlated with QTL for DNA content, further corroborating an earlier result and providing additional support for the conclusion that localized variations in DNA content underlie evolutionary changes in flower size. CONCLUSIONS: The search image for QTL should be broadened to include overall aspects of genome regulation. As we prepare to enter the much-heralded post-genomic era, we also need to revisit our overall models of the relationship between genotype and phenotype to encompass aspects of genome structure and composition beyond structural genes.


Subject(s)
Biological Evolution , Flowers/genetics , Genome, Plant , Silene/genetics , Cell Nucleus/genetics , Crosses, Genetic , DNA, Plant/analysis , DNA, Plant/genetics , Flow Cytometry , Flowers/anatomy & histology , Quantitative Trait Loci , Selection, Genetic
2.
Philos Trans R Soc Lond B Biol Sci ; 358(1434): 1123-32, 2003 Jun 29.
Article in English | MEDLINE | ID: mdl-12831478

ABSTRACT

Many regional floras contain a high proportion of recently introduced plant species. Occasionally, hybridization between an introduced species and another species (introduced or native) can result in interspecific gene flow. This may occur even in instances where the F(1) hybrid shows very high sterility, but occasionally produces a few viable gametes. We provide examples of gene flow occurring between some rhododendrons recently introduced to the British flora, and between an introduced and native Senecio species. Neutral molecular markers have normally been employed to obtain evidence of interspecific gene flow, but the challenge now is to isolate and characterize functional introgressed genes and to determine how they affect the fitness of introgressants and whether they improve adaptation to novel habitats allowing introgressants to expand the range of a species. We outline a candidate gene approach for isolating and characterizing an allele of the RAY gene in Senecio vulgaris, which is believed to have introgressed from S. squalidus, and which causes the production of ray florets in flower heads. We discuss the effects of this introgressed allele on individual fitness, including those that originate directly from the production of ray florets plus those that may arise from pleiotropy and/or linkage.


Subject(s)
Hybridization, Genetic , Senecio/genetics , Adaptation, Physiological , Alleles , Biological Evolution , Genetic Markers , Population Dynamics , Senecio/physiology , Species Specificity , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...