Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 7: 568756, 2020.
Article in English | MEDLINE | ID: mdl-33324696

ABSTRACT

Synovitis is a major component of osteoarthritis and is driven primarily by macrophages. Synovial macrophages are crucial for joint homeostasis (M2-like phenotype), but induce inflammation (M1-like) when regulatory functions become overwhelmed. Macrophage phenotypes in synovium from osteoarthritic and healthy joints are poorly characterized; however, comparative knowledge of their phenotypes during health and disease is paramount for developing targeted treatments. This study compared patterns of macrophage activation in healthy and osteoarthritic equine synovium and correlated histology with cytokine/chemokine profiles in synovial fluid. Synovial histology and immunohistochemistry for M1-like (CD86), M2-like (CD206, IL-10), and pan macrophage (CD14) markers were performed on biopsies from 29 healthy and 26 osteoarthritic equine joints. Synovial fluid cytokines (MCP-1, IL-10, PGE2, IL-1ß, IL-6, TNF-α, IL-1ra) and growth factors (GM-CSF, SDF-1α+ß, IGF-1, and FGF-2) were quantified. Macrophage phenotypes were not as clearly defined in vivo as they are in vitro. All macrophage markers were expressed with minimal differences between OA and normal joints. Expression for all markers increased proportionate to synovial inflammation, especially CD86. Synovial fluid MCP-1 was higher in osteoarthritic joints while SDF-1 and IL-10 were lower, and PGE2 concentrations did not differ between groups. Increased CD14/CD86/CD206/IL-10 expression was associated with synovial hyperplasia, consistent with macrophage recruitment and activation in response to injury. Lower synovial fluid IL-10 could suggest that homeostatic mechanisms from synovial macrophages became overwhelmed preventing inflammation resolution, resulting in chronic inflammation and OA. Further investigations into mechanisms of arthritis resolution are warranted. Developing pro-resolving therapies may provide superior results in the treatment of OA.

2.
FASEB J ; 34(3): 4430-4444, 2020 03.
Article in English | MEDLINE | ID: mdl-32030831

ABSTRACT

Synovial inflammation is a central feature of osteoarthritis (OA), elicited when local regulatory macrophages (M2-like) become overwhelmed, activating an inflammatory response (M1-like). Bone marrow mononuclear cells (BMNC) are a source of naïve macrophages capable of reducing joint inflammation and producing molecules essential for cartilage metabolism. This study investigated the response of BMNC to normal (SF) and inflamed synovial fluid (ISF). Equine BMNC cultured in autologous SF or ISF (n = 8 horses) developed into macrophage-rich cultures with phenotypes similar to cells native to normal SF and became more confluent in ISF (~100%) than SF (~25%). BMNC cultured in SF or ISF were neither M1- nor M2-like, but exhibited aspects of both phenotypes and a regulatory immune response, characterized by increasing counts of IL-10+ macrophages, decreasing IL-1ß concentrations and progressively increasing IL-10 and IGF-1 concentrations. Changes were more marked in ISF and suggest that homeostatic mechanisms were preserved over time and were potentially favored by progressive cell proliferation. Collectively, our data suggest that intra-articular BMNC could increase synovial macrophage counts, potentiating the macrophage- and IL-10-associated mechanisms of joint homeostasis lost during the progression of OA, preserving the production of cytokines involved in tissue repair (PGE2 , IL-10) generally impaired by frequently used corticosteroids.


Subject(s)
Synovial Fluid/metabolism , Synovitis/metabolism , Animals , Cell Proliferation/physiology , Cells, Cultured , Cytokines/metabolism , Female , Flow Cytometry , Horses , Insulin-Like Growth Factor I/metabolism , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Male , Synovitis/immunology
3.
FASEB J ; 33(12): 14337-14353, 2019 12.
Article in English | MEDLINE | ID: mdl-31665925

ABSTRACT

Osteoarthritis (OA) is characterized by macrophage-driven synovitis. Macrophages promote synovial health but become inflammatory when their regulatory functions are overwhelmed. Bone marrow mononuclear cells (BMNCs) are a rich source of macrophage progenitors used for treating chronic inflammation and produce essential molecules for cartilage metabolism. This study investigated the response to autologous BMNC injection in normal and inflamed joints. Synovitis was induced in both radiocarpal joints of 6 horses. After 8 h, 1 inflamed radiocarpal and 1 normal tarsocrural joint received BMNC injection. Contralateral joints were injected with saline. Synovial fluid was collected at 24, 96, and 144 h for cytology, cytokine quantification, and flow cytometry. At 144 h, horses were euthanatized, joints were evaluated, and synovium was harvested for histology and immunohistochemistry. Four days after BMNC treatment, inflamed joints had 24% higher macrophage counts with 10% more IL-10+ cells than saline-treated controls. BMNC-treated joints showed gross and analytical improvements in synovial fluid and synovial membrane, with increasing regulatory macrophages and synovial fluid IL-10 concentrations compared with saline-treated controls. BMNC-treated joints were comparable to healthy joints histologically, which remained abnormal in saline-treated controls. Autologous BMNCs are readily available, regulate synovitis through macrophage-associated effects, and can benefit thousands of patients with OA.-Menarim, B. C., Gillis, K. H., Oliver, A., Mason, C., Ngo, Y., Werre, S. R., Barrett, S. H., Luo, X., Byron, C. R., Dahlgren, L. A. Autologous bone marrow mononuclear cells modulate joint homeostasis in an equine in vivo model of synovitis.


Subject(s)
Bone Marrow Cells , Hematopoietic Stem Cell Transplantation/veterinary , Hematopoietic Stem Cells/physiology , Horse Diseases/therapy , Leukocytes, Mononuclear , Synovitis/veterinary , Animals , Bone Marrow Transplantation , Female , Horses , Injections, Intra-Articular , Joints/metabolism , Joints/pathology , Male , Synovitis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...