Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Physiol Rep ; 12(11): e16108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872461

ABSTRACT

ERK3/MAPK6 activates MAP kinase-activated protein kinase (MK)-5 in selected cell types. Male MK5 haplodeficient mice show reduced hypertrophy and attenuated increase in Col1a1 mRNA in response to increased cardiac afterload. In addition, MK5 deficiency impairs cardiac fibroblast function. This study determined the effect of reduced ERK3 on cardiac hypertrophy following transverse aortic constriction (TAC) and fibroblast biology in male mice. Three weeks post-surgery, ERK3, but not ERK4 or p38α, co-immunoprecipitated with MK5 from both sham and TAC heart lysates. The increase in left ventricular mass and myocyte diameter was lower in TAC-ERK3+/- than TAC-ERK3+/+ hearts, whereas ERK3 haploinsufficiency did not alter systolic or diastolic function. Furthermore, the TAC-induced increase in Col1a1 mRNA abundance was diminished in ERK3+/- hearts. ERK3 immunoreactivity was detected in atrial and ventricular fibroblasts but not myocytes. In both quiescent fibroblasts and "activated" myofibroblasts isolated from adult mouse heart, siRNA-mediated knockdown of ERK3 reduced the TGF-ß-induced increase in Col1a1 mRNA. In addition, intracellular type 1 collagen immunoreactivity was reduced following ERK3 depletion in quiescent fibroblasts but not myofibroblasts. Finally, knocking down ERK3 impaired motility in both atrial and ventricular myofibroblasts. These results suggest that ERK3 plays an important role in multiple aspects of cardiac fibroblast biology.


Subject(s)
Fibroblasts , Animals , Male , Mice , Fibroblasts/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain/metabolism , Myocardium/metabolism , Myocardium/cytology , Mitogen-Activated Protein Kinase 6/metabolism , Mitogen-Activated Protein Kinase 6/genetics , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Cells, Cultured , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/genetics , Myocytes, Cardiac/metabolism
2.
Front Physiol ; 15: 1320065, 2024.
Article in English | MEDLINE | ID: mdl-38426206

ABSTRACT

Background: Angiopoietin-like 2 (ANGPTL2) is a pro-inflammatory and pro-oxidant circulating protein that predicts and promotes chronic inflammatory diseases such as atherosclerosis in humans. Transgenic murine models demonstrated the deleterious role of ANGPTL2 in vascular diseases, while deletion of ANGPTL2 was protective. The nature of its role in cardiac tissues is, however, less clear. Indeed, in adult mice knocked down (KD) for ANGPTL2, we recently reported a mild left ventricular (LV) dysfunction originating from a congenital aortic valve stenosis, demonstrating that ANGPTL2 is essential to cardiac development and function. Hypothesis: Because we originally demonstrated that the KD of ANGPTL2 protected vascular endothelial function via an upregulation of arterial NOX4, promoting the beneficial production of dilatory H2O2, we tested the hypothesis that increased cardiac NOX4 could negatively affect cardiac redox and remodeling and contribute to LV dysfunction observed in adult Angptl2-KD mice. Methods and results: Cardiac expression and activity of NOX4 were higher in KD mice, promoting higher levels of cardiac H2O2 when compared to wild-type (WT) mice. Immunofluorescence showed that ANGPTL2 and NOX4 were co-expressed in cardiac cells from WT mice and both proteins co-immunoprecipitated in HEK293 cells, suggesting that ANGPTL2 and NOX4 physically interact. Pressure overload induced by transverse aortic constriction surgery (TAC) promoted LV systolic dysfunction in WT mice but did not further exacerbate the dysfunction in KD mice. Importantly, the severity of LV systolic dysfunction in KD mice (TAC and control SHAM) correlated with cardiac Nox4 expression. Injection of an adeno-associated virus (AAV9) delivering shRNA targeting cardiac Nox4 expression fully reversed LV systolic dysfunction in KD-SHAM mice, demonstrating the causal role of NOX4 in cardiac dysfunction in KD mice. Targeting cardiac Nox4 expression in KD mice also induced an antioxidant response characterized by increased expression of NRF2/KEAP1 and catalase. Conclusion: Together, these data reveal that the absence of ANGPTL2 induces an upregulation of cardiac NOX4 that contributes to oxidative stress and LV dysfunction. By interacting and repressing cardiac NOX4, ANGPTL2 could play a new beneficial role in the maintenance of cardiac redox homeostasis and function.

3.
Int J Mol Sci ; 24(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894719

ABSTRACT

NTPDase1/CD39, the major vascular ectonucleotidase, exerts thrombo-immunoregulatory function by controlling endothelial P2 receptor activation. Despite the well-described release of ATP from endothelial cells, few data are available regarding the potential role of CD39 as a regulator of arterial diameter. We thus investigated the contribution of CD39 in short-term diameter adaptation and long-term arterial remodeling in response to flow using Entpd1-/- male mice. Compared to wild-type littermates, endothelial-dependent relaxation was modified in Entpd1-/- mice. Specifically, the vasorelaxation in response to ATP was potentiated in both conductance (aorta) and small resistance (mesenteric and coronary) arteries. By contrast, the relaxing responses to acetylcholine were supra-normalized in thoracic aortas while decreased in resistance arteries from Entpd1-/- mice. Acute flow-mediated dilation, measured via pressure myography, was dramatically diminished and outward remodeling induced by in vivo chronic increased shear stress was altered in the mesenteric resistance arteries isolated from Entpd1-/- mice compared to wild-types. Finally, changes in vascular reactivity in Entpd1-/- mice were also evidenced by a decrease in the coronary output measured in isolated perfused hearts compared to the wild-type mice. Our results highlight a key regulatory role for purinergic signaling and CD39 in endothelium-dependent short- and long-term arterial diameter adaptation to increased flow.


Subject(s)
Adenosine Triphosphate , Endothelial Cells , Male , Animals , Mice , Antigens, CD/genetics , Apyrase/physiology , Vasodilation , Endothelium, Vascular
4.
Can J Cardiol ; 39(7): 952-962, 2023 07.
Article in English | MEDLINE | ID: mdl-37054880

ABSTRACT

BACKGROUND: Polymorphisms in the adenylate cyclase 9 (ADCY9) gene influence the benefits of the cholesteryl ester transfer protein (CETP) modulator dalcetrapib on cardiovascular events after acute coronary syndrome. We hypothesized that Adcy9 inactivation could improve cardiac function and remodelling following myocardial infarction (MI) in absence of CETP activity. METHODS: Wild-type (WT) and Adcy9-inactivated (Adcy9Gt/Gt) male mice, transgenic or not for human CETP (tgCETP+/-), were subjected to MI by permanent left anterior descending coronary artery ligation and studied for 4 weeks. Left ventricular (LV) function was assessed by echocardiography at baseline, 1, and 4 weeks after MI. At sacrifice, blood, spleen and bone marrow cells were collected for flow cytometry analysis, and hearts were harvested for histologic analyses. RESULTS: All mice developed LV hypertrophy, dilation, and systolic dysfunction, but Adcy9Gt/Gt mice exhibited reduced pathologic LV remodelling and better LV function compared with WT mice. There were no differences between tgCETP+/- and Adcy9Gt/Gt tgCETP+/- mice, which both exhibited intermediate responses. Histologic analyses showed smaller cardiomyocyte size, reduced infarct size, and preserved myocardial capillary density in the infarct border zone in Adcy9Gt/Gt vs WT mice. Count of bone marrow T cells and B cells were significantly increased in Adcy9Gt/Gt mice compared with the other genotypes. CONCLUSIONS: Adcy9 inactivation reduced infarct size, pathologic remodelling, and cardiac dysfunction. These changes were accompanied by preserved myocardial capillary density and increased adaptive immune response. Most of the benefits of Adcy9 inactivation were only observed in the absence of CETP.


Subject(s)
Myocardial Infarction , Animals , Humans , Male , Mice , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Myocardial Infarction/complications , Myocardium/pathology , Myocytes, Cardiac/metabolism , Ventricular Remodeling/physiology
5.
J Am Heart Assoc ; 10(4): e017791, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33533257

ABSTRACT

Background Mitogen-activated protein kinase-activated protein kinase-2 (MK2) is a protein serine/threonine kinase activated by p38α/ß. Herein, we examine the cardiac phenotype of pan MK2-null (MK2-/-) mice. Methods and Results Survival curves for male MK2+/+ and MK2-/- mice did not differ (Mantel-Cox test, P=0.580). At 12 weeks of age, MK2-/- mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R-R interval and P-R segment durations were prolonged in MK2-deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2-/- mice. MK2-/- mice had lower body temperature and an age-dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2-/- mice. For equivalent respiration rates, mitochondria from MK2-/- hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2-/- mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2-/- mice. Finally, the pressure overload-induced decrease in systolic function was attenuated in MK2-/- mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.


Subject(s)
Blood Pressure/physiology , Bradycardia/physiopathology , Cardiomyopathy, Hypertrophic/physiopathology , Heart Rate/physiology , Mitochondria, Heart/metabolism , Ventricular Function, Left/physiology , Ventricular Remodeling , Animals , Bradycardia/diagnosis , Bradycardia/metabolism , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Serine-Threonine Kinases/deficiency
6.
J Anal Toxicol ; 45(5): e8-e12, 2021 May 14.
Article in English | MEDLINE | ID: mdl-32991682

ABSTRACT

A 30-year-old woman presented to the emergency department 2 days after ingestion of 50 castor beans. Her symptoms on admission were vomiting, diarrhea, abdominal cramps, agitation and anxiety. Initial laboratory tests showed a slightly elevated C-reactive protein and mild liver and kidney dysfunction. The patient was transferred to the medium care unit of our hospital where she was observed for possible organ failure. During the next days, the kidney function improved and liver function started to recover. Four days after admission, the patient was transferred to the psychiatric ward. Urine, serum, plasma and whole-blood samples were analyzed for ricinine using a quantitative LC-MS-MS method. Initial values on admission (serum and urine) were very high in comparison with previously reported cases. Based on these values, the patient was monitored closely in the following days. The patient made a full recovery, and during the course of hospitalization, concentrations of ricinine in plasma/serum, blood and urine gradually declined. The presence of ricinine in a patient's blood or plasma is a proof of castor bean and, hence, ricin exposure. However, based on this case and previously reported cases in literature, we can conclude that no clear correlation can be established between ricinine blood, plasma or urine levels and the severity of the intoxication. Clinicians should be aware of the potential danger of a ricin intoxication, and patients should be monitored closely for several days due to the unpredictable outcome of the intoxication.


Subject(s)
Alkaloids , Ricinus communis , Adult , Eating , Female , Humans , Pyridones
7.
Nature ; 587(7834): 460-465, 2020 11.
Article in English | MEDLINE | ID: mdl-33149301

ABSTRACT

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Subject(s)
Arrhythmias, Cardiac/metabolism , Calcitonin/metabolism , Fibrinogen/biosynthesis , Heart Atria/metabolism , Myocardium/metabolism , Paracrine Communication , Animals , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Atrial Fibrillation , Collagen Type I/metabolism , Female , Fibroblasts/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Heart Atria/cytology , Heart Atria/pathology , Heart Atria/physiopathology , Humans , Male , Mice , Myocardium/cytology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Receptors, Calcitonin/metabolism
8.
Emerg Radiol ; 27(6): 663-670, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32910323

ABSTRACT

PURPOSE: Diagnostic value of point-of-care lung ultrasound (POCUS) in detection of coronavirus disease (COVID-19) in an emergency setting is currently unclear. In this study, we aimed to compare diagnostic performance, in terms of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy, of POCUS lung, chest CT, and RT-PCR for clinically suspected COVID-19 infections in patients submitting to the emergency room (ER). MATERIAL AND METHODS: This retrospective study enrolled 93 patients with a suspected COVID-19 infection, admitted to the ER between March 28th and April 20th, 2020. Test subjects showed one or more symptoms of an acute respiratory infection, for which consequent COVID-19 testing was achieved using POCUS lung, chest CT, and RT-PCR. CT images were analyzed by 2 radiologists blinded to RT-PCR results. POCUS lung was performed by three emergency medical doctors, and reports were analyzed by the researcher, blinded to clinical information, US imaging, CT, and RT-PCR test results. RESULTS: Compared with RT-PCR, POCUS lung demonstrated outstanding sensitivity and NPV (93.3% and 94.1% respectively) while showing poor values for specificity, PPV, and accuracy (21.3%, 19.2%, and 33.3% respectively). In contrast, similar inquiries using chest CT as index test, excellent sensitivity, specificity, NPV, and accuracy (80.0%, 86.7%, 95.6%, and 85.6%, respectively) were reported, beside a moderate value for PPV (54.5%). CONCLUSION: POCUS may provide early ER triage with a useful, rapid, low-threshold, and safe screening tool in evaluating possible COVID-19 infections. Due to limited specificity, suggestive POCUS lung findings should be confirmed with RT-PCR or chest CT.


Subject(s)
Coronavirus Infections/diagnostic imaging , Emergency Service, Hospital , Pneumonia, Viral/diagnostic imaging , Point-of-Care Systems , Triage , Betacoronavirus , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Feasibility Studies , Female , Humans , Male , Middle Aged , Pandemics , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
9.
Radiol Cardiothorac Imaging ; 2(2): e200196, 2020 Apr.
Article in English | MEDLINE | ID: mdl-33778576

ABSTRACT

PURPOSE: To demonstrate the accuracy and reproducibility of low-dose submillisievert chest CT for the diagnosis of coronavirus disease 2019 (COVID-19) infection in patients in the emergency department. MATERIALS AND METHODS: This was a Health Insurance Portability and Accountability Act-compliant, institutional review board-approved retrospective study. From March 14 to 24, 2020, 192 patients in the emergency department with symptoms suggestive of COVID-19 infection were studied by using low-dose chest CT and real-time reverse transcription polymerase chain reaction (RT-PCR). Image analysis included the likelihood of COVID-19 infection and the semiquantitative extent of lung involvement. CT images were analyzed by two radiologists blinded to the RT-PCR results. Reproducibility was assessed using the McNemar test and intraclass correlation coefficient. Time between CT acquisition and report was measured. RESULTS: When compared with RT-PCR, low-dose submillisievert chest CT demonstrated excellent sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for diagnosis of COVID-19 (86.7%, 93.6%, 91.1%, 90.3%, and 90.2%, respectively), in particular in patients with clinical symptoms for more than 48 hours (95.6%, 93.2%, 91.5%, 96.5%, and 94.4%, respectively). In patients with a positive CT result, the likelihood of disease increased from 43.2% (pretest probability) to 91.1% or 91.4% (posttest probability), while in patients with a negative CT result, the likelihood of disease decreased to 9.6% or 3.7% for all patients or those with clinical symptoms for >48 hours. The prevalence of alternative diagnoses based on chest CT in patients without COVID-19 infection was 17.6%. The mean effective radiation dose was 0.56 mSv ± 0.25 (standard deviation). Median time between CT acquisition and report was 25 minutes (interquartile range: 13-49 minutes). Intra- and interreader reproducibility of CT was excellent (all intraclass correlation coefficients ≥ 0.95) without significant bias in the Bland-Altman analysis. CONCLUSION: Low-dose submillisievert chest CT allows for rapid, accurate, and reproducible assessment of COVID-19 infection in patients in the emergency department, in particular in patients with symptoms lasting longer than 48 hours. Chest CT has the additional advantage of offering alternative diagnoses in a significant subset of patients.© RSNA, 2020.

10.
Radiol Cardiothorac Imaging ; 2(5): e200441, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33778634

ABSTRACT

PURPOSE: To compare the prognostic value and reproducibility of visual versus AI-assisted analysis of lung involvement on submillisievert low-dose chest CT in COVID-19 patients. MATERIALS AND METHODS: This was a HIPAA-compliant, institutional review board-approved retrospective study. From March 15 to June 1, 2020, 250 RT-PCR confirmed COVID-19 patients were studied with low-dose chest CT at admission. Visual and AI-assisted analysis of lung involvement was performed by using a semi-quantitative CT score and a quantitative percentage of lung involvement. Adverse outcome was defined as intensive care unit (ICU) admission or death. Cox regression analysis, Kaplan-Meier curves, and cross-validated receiver operating characteristic curve with area under the curve (AUROC) analysis was performed to compare model performance. Intraclass correlation coefficients (ICCs) and Bland- Altman analysis was used to assess intra- and interreader reproducibility. RESULTS: Adverse outcome occurred in 39 patients (11 deaths, 28 ICU admissions). AUC values from AI-assisted analysis were significantly higher than those from visual analysis for both semi-quantitative CT scores and percentages of lung involvement (all P<0.001). Intrareader and interreader agreement rates were significantly higher for AI-assisted analysis than visual analysis (all ICC ≥0.960 versus ≥0.885). AI-assisted variability for quantitative percentage of lung involvement was 17.2% (coefficient of variation) versus 34.7% for visual analysis. The sample size to detect a 5% change in lung involvement with 90% power and an α error of 0.05 was 250 patients with AI-assisted analysis and 1014 patients with visual analysis. CONCLUSION: AI-assisted analysis of lung involvement on submillisievert low-dose chest CT outperformed conventional visual analysis in predicting outcome in COVID-19 patients while reducing CT variability. Lung involvement on chest CT could be used as a reliable metric in future clinical trials.

11.
Sci Rep ; 9(1): 8203, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160695

ABSTRACT

The present study tested the hypothesis that p38α MAPK inhibition leads to cell cycle re-entry of neonatal ventricular cardiomyocytes (NNVMs) and de novo nestin expression in response to thrombin and after apex resection of the neonatal rat heart. Thrombin (1 U/ml) treatment of 1-day old NNVMs did not induce cell cycle re-entry or nestin expression. Acute exposure of NNVMs to thrombin increased p38α MAPK and HSP27 phosphorylation and p38α/ß MAPK inhibitor SB203580 abrogated HSP27 phosphorylation. Thrombin and SB203580 co-treatment of NNVMs led to bromodeoxyuridine incorporation and nestin expression. SB203580 (5 mg/kg) administration immediately after apex resection of 1-day old neonatal rat hearts and continued for two additional days shortened the fibrin clot length sealing the exposed left ventricular chamber. SB203580-treatment increased the density of troponin-T(+)-NNVMs that incorporated bromodeoxyuridine and expressed nuclear phosphohistone-3. Nestin(+)-NNVMs were selectively detected at the border of the fibrin clot and SB203580 potentiated the density that re-entered the cell cycle. These data suggest that the greater density of ventricular cardiomyocytes and nestin(+)-ventricular cardiomyocytes that re-entered the cell cycle after SB203580 treatment of the apex-resected neonatal rat heart during the acute phase of fibrin clot formation may be attributed in part to inhibition of thrombin-mediated p38α MAPK signalling.


Subject(s)
Heart Ventricles/cytology , Heart Ventricles/surgery , Mitogen-Activated Protein Kinase 14/metabolism , Myocytes, Cardiac/cytology , Nestin/metabolism , Thrombin/metabolism , Animals , Animals, Newborn , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Cycle , Cell Division/drug effects , Fibrin/metabolism , Imidazoles/pharmacology , Phosphorylation , Pyridines/pharmacology , Rats , Signal Transduction
12.
Geroscience ; 41(5): 511-532, 2019 10.
Article in English | MEDLINE | ID: mdl-31093829

ABSTRACT

Cognitive functions are dependent upon intercommunications between the cellular components of the neurovascular unit (NVU). Vascular risk factors are associated with a more rapid rate of cognitive decline with aging and cerebrovascular diseases magnify both the incidence and the rate of cognitive decline. The causal relationship between vascular risk factors and injury to the NVU is, however, lacking. We hypothesized that vascular risk factors, such as hypertension and dyslipidemia, promote disruption of the NVU leading to early cognitive impairment. We compared brain structure and cerebrovascular functions of 1-year old (middle-aged) male wild-type (WT) and atherosclerotic hypertensive (LDLr-/-:hApoB+/+, ATX) mice. In addition, mice were subjected, or not, to a transverse aortic constriction (TAC) for 6 weeks to assess the acute impact of an increase in systolic blood pressure on the NVU and cognitive functions. Compared with WT mice, ATX mice prematurely developed cognitive decline associated with cerebral micro-hemorrhages, loss of microvessel density and brain atrophy, cerebral endothelial cell senescence and dysfunction, brain inflammation, and oxidative stress associated with blood-brain barrier leakage and brain hypoperfusion. These data suggest functional disturbances in both vascular and parenchymal components of the NVU. Exposure to TAC-induced systolic hypertension promoted cerebrovascular damage and cognitive decline in WT mice, similar to those observed in sham-operated ATX mice; TAC exacerbated the existing cerebrovascular dysfunctions and cognitive failure in ATX mice. Thus, a hemodynamic stress such as systolic hypertension could initiate the cascade involving cerebrovascular injury and NVU deregulation and lead to cognitive decline, a process accelerated in atherosclerotic mice.


Subject(s)
Atherosclerosis/physiopathology , Brain/blood supply , Cognitive Dysfunction/physiopathology , Dementia, Vascular/physiopathology , Hypertension/physiopathology , Systole/physiology , Animals , Atrophy , Blood-Brain Barrier/physiopathology , Brain/pathology , Cellular Senescence/physiology , Cerebral Hemorrhage/physiopathology , Disease Models, Animal , Endothelial Cells/pathology , Mice, Transgenic , Microvessels/pathology , Oxidative Stress/physiology
13.
Am J Physiol Heart Circ Physiol ; 316(6): H1281-H1296, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30901279

ABSTRACT

MK5 is a protein serine/threonine kinase activated by p38, ERK3, and ERK4 MAPKs. MK5 mRNA and immunoreactivity are detected in mouse cardiac fibroblasts, and MK5 haplodeficiency attenuates the increase in collagen 1-α1 mRNA evoked by pressure overload. The present study examined the effect of MK5 haplodeficiency on reparative fibrosis following myocardial infarction (MI). Twelve-week-old MK5+/- and wild-type littermate (MK5+/+) mice underwent ligation of the left anterior descending coronary artery (LADL). Surviving mice were euthanized 8 or 21 days post-MI. Survival rates did not differ significantly between MK5+/+ and MK5+/- mice, with rupture of the LV wall being the primary cause of death. Echocardiographic imaging revealed similar increases in LV end-diastolic diameter, myocardial performance index, and wall motion score index in LADL-MK5+/+ and LADL-MK5+/- mice. Area at risk did not differ between LADL-MK5+/+ and LADL-MK5+/- hearts. In contrast, infarct size, scar area, and scar collagen content were reduced in LADL-MK5+/- hearts. Immunohistochemical analysis of mice experiencing heart rupture revealed increased MMP-9 immunoreactivity in the infarct border zone of LADL-MK5+/- hearts compared with LADL-MK5+/+. Although inflammatory cell infiltration was similar in LADL-MK5+/+ and LADL-MK5+/- hearts, angiogenesis was more pronounced in the infarct border zone of LADL-MK5+/- mice. Characterization of ventricular fibroblasts revealed reduced motility and proliferation in fibroblasts isolated from MK5-/- mice compared with those from both wild-type and haplodeficient mice. siRNA-mediated knockdown of MK5 in fibroblasts from wild-type mice also impaired motility. Hence, reduced MK5 expression alters fibroblast function and scar morphology but not mortality post-MI. NEW & NOTEWORTHY MK5/PRAK is a protein serine/threonine kinase activated by p38 MAPK and/or atypical MAPKs ERK3/4. MK5 haplodeficiency reduced infarct size, scar area, and scar collagen content post-myocardial infarction. Motility and proliferation were reduced in cultured MK5-null cardiac myofibroblasts.


Subject(s)
Cicatrix/enzymology , Collagen/metabolism , Haploinsufficiency , Intracellular Signaling Peptides and Proteins/deficiency , Myocardial Infarction/enzymology , Myocardium/enzymology , Myofibroblasts/enzymology , Protein Serine-Threonine Kinases/deficiency , Wound Healing , Animals , Cell Movement , Cell Proliferation , Cells, Cultured , Cicatrix/pathology , Cicatrix/physiopathology , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/genetics , Male , Matrix Metalloproteinase 9/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Myofibroblasts/pathology , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Ventricular Function, Left , Ventricular Remodeling
14.
Cardiovasc Res ; 115(1): 94-106, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30016400

ABSTRACT

Aims: Heart failure (HF) produces left atrial (LA)-selective fibrosis and promotes atrial fibrillation. HF also causes adrenergic activation, which contributes to remodelling via a variety of signalling molecules, including the exchange protein activated by cAMP (Epac). Here, we evaluate the effects of Epac1-signalling on LA fibroblast (FB) function and its potential role in HF-related atrial remodelling. Methods and results: HF was induced in adult male mongrel dogs by ventricular tachypacing (VTP). Epac1-expression decreased in LA-FBs within 12 h (-3.9-fold) of VTP onset. The selective Epac activator, 8-pCPT (50 µM) reduced, whereas the Epac blocker ESI-09 (1 µM) enhanced, collagen expression in LA-FBs. Norepinephrine (1 µM) decreased Epac1-expression, an effect blocked by prazosin, and increased FB collagen production. The ß-adrenoceptor (AR) agonist isoproterenol increased Epac1 expression, an effect antagonized by ICI (ß2-AR-blocker), but not by CGP (ß1-AR-blocker). ß-AR-activation with isoproterenol decreased collagen expression, an effect mimicked by the ß2-AR-agonist salbutamol and blocked by the Epac1-antagonist ESI-09. Transforming growth factor-ß1, known to be activated in HF, suppressed Epac1 expression, an effect blocked by the Smad3-inhibitor SIS3. To evaluate effects on atrial fibrosis in vivo, mice subjected to myocardial infarction (MI) received the Epac-activator Sp-8-pCPT or vehicle for 2 weeks post-MI; Sp-8-pCPT diminished LA fibrosis and attenuated cardiac dysfunction. Conclusions: HF reduces LA-FB Epac1 expression. Adrenergic activation has complex effects on FBs, with α-AR-activation suppressing Epac1-expression and increasing collagen expression, and ß2-AR-activation having opposite effects. Epac1-activation reduces cardiac dysfunction and LA fibrosis post-MI. Thus, Epac1 signalling may be a novel target for the prevention of profibrillatory cardiac remodelling.


Subject(s)
Atrial Fibrillation/metabolism , Atrial Function, Left , Atrial Remodeling , Fibroblasts/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Heart Atria/metabolism , Heart Failure/metabolism , Myocardial Infarction/metabolism , Animals , Atrial Fibrillation/etiology , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Cells, Cultured , Collagen/metabolism , Disease Models, Animal , Dogs , Fibroblasts/pathology , Fibrosis , Heart Atria/pathology , Heart Atria/physiopathology , Heart Failure/complications , Heart Failure/pathology , Heart Failure/physiopathology , Male , Mice, Inbred C57BL , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Receptors, Adrenergic, alpha/metabolism , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction
15.
Hypertension ; 73(1): 217-228, 2019 01.
Article in English | MEDLINE | ID: mdl-30571552

ABSTRACT

A chronic and gradual increase in pulse pressure (PP) is associated with cognitive decline and dementia in older individuals, but the mechanisms remain ill-defined. We hypothesized that a chronic elevation of PP would cause brain microvascular endothelial mechanical stress, damage the neurovascular unit, and ultimately induce cognitive impairment in mice, potentially contributing to the progression of vascular dementia and Alzheimer disease. To test our hypothesis, male control wild-type mice and Alzheimer disease model APP/PS1 (amyloid precursor protein/presenilin 1) mice were exposed to a transverse aortic constriction for 6 weeks, creating a PP overload in the right carotid (ipsilateral). We show that the transverse aortic constriction procedure associated with high PP induces a cascade of vascular damages in the ipsilateral parenchymal microcirculation: in wild-type mice, it impairs endothelial dilatory and blood brain barrier functions and causes microbleeds, a reduction in microvascular density, microvascular cell death by apoptosis, leading to severe hypoperfusion and parenchymal cell senescence. These damages were associated with brain inflammation and a significant reduction in learning and spatial memories. In APP/PS1 mice, that endogenously display severe cerebral vascular dysfunctions, microbleeds, parenchymal inflammation and cognitive dysfunction, transverse aortic constriction-induced high PP further aggravates cerebrovascular damage, Aß (beta-amyloid) accumulation, and prevents learning. Our study, therefore, demonstrates that brain microvessels are vulnerable to a high PP and mechanical stress associated with transverse aortic constriction, promoting severe vascular dysfunction, disruption of the neurovascular unit, and cognitive decline. Hence, chronic elevated amplitude of the PP could contribute to the development and progression of vascular dementia including Alzheimer disease.


Subject(s)
Alzheimer Disease , Brain Injury, Chronic , Brain , Cognitive Dysfunction , Dementia, Vascular , Microvessels , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Animals , Blood Pressure/physiology , Brain/blood supply , Brain/metabolism , Brain/physiopathology , Brain Injury, Chronic/complications , Brain Injury, Chronic/physiopathology , Cerebrovascular Circulation , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Dementia, Vascular/metabolism , Dementia, Vascular/physiopathology , Disease Models, Animal , Disease Progression , Endothelial Cells/physiology , Mice , Microvessels/injuries , Microvessels/physiopathology
16.
Circulation ; 138(16): 1677-1692, 2018 10 16.
Article in English | MEDLINE | ID: mdl-29674325

ABSTRACT

BACKGROUND: Pharmacogenomic studies have shown that ADCY9 genotype determines the effects of the CETP (cholesteryl ester transfer protein) inhibitor dalcetrapib on cardiovascular events and atherosclerosis imaging. The underlying mechanisms responsible for the interactions between ADCY9 and CETP activity have not yet been determined. METHODS: Adcy9-inactivated ( Adcy9Gt/Gt) and wild-type (WT) mice, that were or not transgenic for the CETP gene (CETPtg Adcy9Gt/Gt and CETPtg Adcy9WT), were submitted to an atherogenic protocol (injection of an AAV8 [adeno-associated virus serotype 8] expressing a PCSK9 [proprotein convertase subtilisin/kexin type 9] gain-of-function variant and 0.75% cholesterol diet for 16 weeks). Atherosclerosis, vasorelaxation, telemetry, and adipose tissue magnetic resonance imaging were evaluated. RESULTS: Adcy9Gt/Gt mice had a 65% reduction in aortic atherosclerosis compared to WT ( P<0.01). CD68 (cluster of differentiation 68)-positive macrophage accumulation and proliferation in plaques were reduced in Adcy9Gt/Gt mice compared to WT animals ( P<0.05 for both). Femoral artery endothelial-dependent vasorelaxation was improved in Adcy9Gt/Gt mice (versus WT, P<0.01). Selective pharmacological blockade showed that the nitric oxide, cyclooxygenase, and endothelial-dependent hyperpolarization pathways were all responsible for the improvement of vasodilatation in Adcy9Gt/Gt ( P<0.01 for all). Aortic endothelium from Adcy9Gt/Gt mice allowed significantly less adhesion of splenocytes compared to WT ( P<0.05). Adcy9Gt/Gt mice gained more weight than WT with the atherogenic diet; this was associated with an increase in whole body adipose tissue volume ( P<0.01 for both). Feed efficiency was increased in Adcy9Gt/Gt compared to WT mice ( P<0.01), which was accompanied by prolonged cardiac RR interval ( P<0.05) and improved nocturnal heart rate variability ( P=0.0572). Adcy9 inactivation-induced effects on atherosclerosis, endothelial function, weight gain, adipose tissue volume, and feed efficiency were lost in CETPtg Adcy9Gt/Gt mice ( P>0.05 versus CETPtg Adcy9WT). CONCLUSIONS: Adcy9 inactivation protects against atherosclerosis, but only in the absence of CETP activity. This atheroprotection may be explained by decreased macrophage accumulation and proliferation in the arterial wall, and improved endothelial function and autonomic tone.


Subject(s)
Adenylyl Cyclases/deficiency , Aorta/enzymology , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Cholesterol Ester Transfer Proteins/deficiency , Plaque, Atherosclerotic , Adenylyl Cyclases/genetics , Adiposity , Animals , Aorta/pathology , Aorta/physiopathology , Aortic Diseases/enzymology , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Autonomic Nervous System/physiopathology , Biological Factors/metabolism , Cell Proliferation , Cholesterol Ester Transfer Proteins/genetics , Diet, High-Fat , Disease Models, Animal , Endothelial Cells/enzymology , Endothelial Cells/pathology , Lipids/blood , Lipolysis , Macrophages/enzymology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Proprotein Convertase 9/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Signal Transduction , Vasodilation , Weight Gain
17.
Exp Biol Med (Maywood) ; 243(1): 45-49, 2018 01.
Article in English | MEDLINE | ID: mdl-29192516

ABSTRACT

Angiopoietin-like 2 (ANGPTL2) is an inflammatory adipokine linking obesity to insulin resistance. Intermittent fasting, on the other hand, is a lifestyle intervention able to prevent obesity and diabetes but difficult to implement and maintain. Our objectives were to characterize a link between ANGPTL2 and intermittent fasting and to investigate whether the knockdown of ANGPTL2 reproduces the benefits of intermittent fasting on weight gain and insulin responsiveness in knockdown and wild-type littermates mice. Intermittent fasting, access to food ad libitum once every other day, was initiated at the age of three months and maintained for four months. Intermittent fasting decreased by 63% (p < 0.05) gene expression of angptl2 in adipose tissue of wild-type mice. As expected, intermittent fasting improved insulin sensitivity (p < 0.05) and limited weight gain (p < 0.05) in wild-type mice. Knockdown mice fed ad libitum, however, were comparable to wild-type mice following the intermittent fasting regimen: insulin sensitivity and weight gain were identical, while intermittent fasting had no additional impact on these parameters in knockdown mice. Energy intake was similar between both wild-type fed intermittent fasting and ANGPTL2 knockdown mice fed ad libitum, suggesting that intermittent fasting and knockdown of ANGPTL2 equally lower feeding efficiency. These results suggest that the reduction of ANGPTL2 could be a useful and promising strategy to prevent obesity and insulin resistance, although further investigation of the mechanisms linking ANGPTL2 and intermittent fasting is warranted. Impact statement Intermittent fasting is an efficient diet pattern to prevent weight gain and improve insulin sensitivity. It is, however, a difficult regimen to follow and compliance is expected to be very low. In this work, we demonstrate that knockdown of ANGPTL2 in mice fed ad libitum mimics the beneficial effects of intermittent fasting on weight gain and insulin sensitivity in wild-type mice. ANGPTL2 is a cytokine positively associated with fat mass in humans, which inactivation in mice improves resistance to a high-fat metabolic challenge. This study provides a novel pathway by which IF acts to limit obesity despite equivalent energy intake. The development of a pharmacological ANGPTL2 antagonist could provide an efficient tool to reduce the burden of obesity.


Subject(s)
Angiopoietin-like Proteins/metabolism , Fasting , Insulin Resistance , Obesity/prevention & control , Angiopoietin-Like Protein 2 , Animals , Gene Knockdown Techniques , Humans , Hypoglycemic Agents/metabolism , Insulin/metabolism , Male , Mice, Inbred C57BL , Obesity/complications , Weight Loss
19.
Am J Physiol Heart Circ Physiol ; 313(1): H46-H58, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28432058

ABSTRACT

MAPK-activated protein kinase-5 (MK5) is a protein serine/threonine kinase that is activated by p38 MAPK and the atypical MAPKs ERK3 and ERK4. The physiological function(s) of MK5 remains unknown. Here, we examined the effect of MK5 haplodeficiency on cardiac function and myocardial remodeling. At 12 wk of age, MK5 haplodeficient mice (MK5+/-) were smaller than age-matched wild-type littermates (MK5+/+), with similar diastolic function but reduced systolic function. Transverse aortic constriction (TAC) was used to induce chronic pressure overload in 12-wk-old male MK5+/- and MK5+/+ mice. Two weeks post-TAC, heart weight-to-tibia length ratios were similarly increased in MK5+/- and MK5+/+ hearts, as was the abundance of B-type natriuretic peptide and ß-myosin heavy chain mRNA. Left ventricular ejection fraction was reduced in both MK5+/+ and MK5+/- mice, whereas regional peak systolic tissue velocities were reduced and isovolumetric relaxation time was prolonged in MK5+/+ hearts but not in MK5+/- hearts. The TAC-induced increase in collagen type 1-α1 mRNA observed in MK5+/+ hearts was markedly attenuated in MK5+/- hearts. Eight weeks post-TAC, systolic function was equally impaired in MK5+/+ and MK5+/- mice. In contrast, the increase in E wave deceleration rate and progression of hypertrophy observed in TAC MK5+/+ mice were attenuated in TAC MK5+/- mice. MK5 immunoreactivity was detected in adult fibroblasts but not in myocytes. MK5+/+, MK5+/-, and MK5-/- fibroblasts all expressed α-smooth muscle actin in culture. Hence, reduced MK5 expression in cardiac fibroblasts was associated with the attenuation of both hypertrophy and development of a restrictive filling pattern during myocardial remodeling in response to chronic pressure overload.NEW & NOTEWORTHY MAPK-activated protein kinase-5 (MK5)/p38-regulated/activated protein kinase is a protein serine/threonine kinase activated by p38 MAPK and/or the atypical MAPKs ERK3 and ERK4. MK5 immunoreactivity was detected in adult ventricular fibroblasts but not in myocytes. MK5 haplodeficiency attenuated the progression of hypertrophy, reduced collagen type 1 mRNA, and protected diastolic function in response to chronic pressure overload.


Subject(s)
Hypertrophy, Left Ventricular/physiopathology , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Ventricular Dysfunction, Left/physiopathology , Ventricular Remodeling/physiology , Animals , Haplotypes/genetics , Hypertrophy, Left Ventricular/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Stroke Volume , Ventricular Dysfunction, Left/complications
20.
Cardiovasc Res ; 113(3): 310-320, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28158495

ABSTRACT

AIMS: Left-atrial (LA) fibrosis is an important feature of many atrial fibrillation (AF) substrates. The JAK-STAT system contributes to cardiac remodelling, but its role in AF is unknown. Here we investigated JAK-STAT changes in an AF-model and their potential contributions to LA-fibrosis. METHODS AND RESULTS: LA-remodelling was studied in dogs with heart failure (HF) induced by ventricular tachypacing (VTP, 240 bpm), and in mice with left-ventricular (LV) dysfunction due to myocardial infarction (MI). The selective STAT-3 inhibitor S3I-201 was administered to fibroblasts in vitro or mice in vivo (10 mg/kg/d, osmotic mini-pump). HF-dogs developed LA-selective fibrosis and AF-susceptibility at 1-week VTP. The mRNA-expression of platelet-derived growth factor (PDGF, a JAK-STAT activator) isoforms A, C and D, as well as JAK2, increased in LA fibroblasts from 1-week VTP. HF upregulated protein-expression of PDGF-receptor-ß and phosphorylated (activated) signal transducer and activator of transcription 3 (STAT3) in LA. PDGF-AB stimulation of LA fibroblasts increased PDGFR-α, STAT3 and phosphorylated-STAT3 expression, as well as collagen-1 and fibronectin-1 protein secretion (by 1.6- to 20-fold), with smaller changes in LV fibroblasts. Phosphorylated-STAT3 and collagen upregulation were suppressed by the JAK2 inhibitor AG-490, PDGF receptor inhibitor AG1296 and STAT3-inhibitor SI3-201. In vivo S3I-201 treatment of MI-mice attenuated LA-fibrosis, LA-dilation and P-wave duration changes versus vehicle-control. CONCLUSIONS: HF activates the LA JAK-STAT system and enhances PDGF-signalling. JAK-STAT inhibition reduces the profibrotic effects of PDGF stimulation on canine fibroblasts in vitro while attenuating in vivo LA-fibrosis and remodelling in post-MI mice, suggesting that the JAK/STAT pathway contributes to LA-fibrogenesis and might be a potential target for LA-fibrosis prevention.

SELECTION OF CITATIONS
SEARCH DETAIL
...