Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(11): 118202, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-37001073

ABSTRACT

Dense non-Brownian suspensions exhibit a spectacular and abrupt drop in viscosity under change of shear direction, as revealed by shear inversions (reversals) or orthogonal superposition. Here, we introduce an experimental setup to systematically explore their response to shear rotations, where one suddenly rotates the principal axes of shear by an angle θ, and measure the shear stresses with a biaxial force sensor. Our measurements confirm the genericness of the transient decrease of the resistance to shear under unsteady conditions. Moreover, the orthogonal shear stress, which vanishes in steady state, takes non-negligible values with a rich θ dependence, changing qualitatively with solid volume fraction ϕ and resulting in a force that tends to reduce or enhance the direction of flow for small or large ϕ. These experimental findings are confirmed and rationalized by particle-based numerical simulations and a recently proposed constitutive model. We show that the rotation angle dependence of the orthogonal stress results from a ϕ-dependent interplay between hydrodynamic and contact stresses.

2.
Materials (Basel) ; 13(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081380

ABSTRACT

Industrial formulations very often involve particles with a broad range of surface characteristics and size distributions. Particle surface asperities (roughness) and porosity increase particle specific surface area and significantly alter suspension rheology, which can be detrimental to the quality of the end product. We examine the rheological properties of two types of non-Brownian, commercial precipitated silicas, with varying specific surface area, namely PS52 and PS226, suspended in a non-aqueous solvent, glycerol, and compare them against those of glass sphere suspensions (GS2) with a similar size distribution. A non-monotonic effect of the specific surface area (S) on suspension rheology is observed, whereby PS52 particles in glycerol are found to exhibit strong shear thinning response, whereas such response is suppressed for glass sphere and PS226 particle suspensions. This behaviour is attributed to the competing mechanisms of particle-particle and particle-solvent interactions. In particular, increasing the specific surface area beyond a certain value results in the repulsive interparticle hydration forces (solvation forces) induced by glycerol overcoming particle frictional contacts and suppressing shear thinning; this is evidenced by the response of the highest specific surface area particles PS226. The study demonstrates the potential of using particle specific surface area as a means to tune the rheology of non-Brownian silica particle suspensions.

3.
Rev Sci Instrum ; 90(4): 046105, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31043033

ABSTRACT

In this paper, we present a universal microfluidic liquid chamber device platform for atomic force microscopy (AFM), which enables to fabricate the uniform lipid bilayer on the hydrophilic surface using the solvent-assisted lipid bilayer formation method. Using this device enables us to acquire the various properties of delicate soft matter, including morphological data, and mechanical property measurements, using high-resolution AFM systems. The proposed technology is expected to provide an understanding of complicated biological materials.

4.
Langmuir ; 34(1): 503-511, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29200303

ABSTRACT

Enclosed lipid bilayer structures, referred to as liposomes or lipid vesicles, have a wide range of biological functions, such as cellular signaling and membrane trafficking. The efficiency of cellular uptake of liposomes, a key step in many of these functions, is strongly dependent on the contact area between a liposome and a cell membrane, which is governed by the adhesion force w, the membrane bending energy κ, and the osmotic pressure Δp. Herein, we investigate the relationship between these forces and the physicochemical properties of the solvent, namely, the presence of glucose (a nonionic osmolyte). Using fluorescence microscopy, we measure the diffusivity D of small (∼50 nm radius), fluorescently labeled liposomes adhering to a supported lipid bilayer or to the freestanding membrane of a giant (∼10 µm radius) liposome. It is observed that glucose in solution reduces D on the supported membrane, while having negligible effect on D on the freestanding membrane. Using well-known hydrodynamic theory for the diffusivity of membrane inclusions, these observations suggest that glucose enhances the contact area between the small liposomes and the underlying membrane, while not affecting the viscosity of the underlying membrane. In addition, quartz crystal microbalance experiments showed no significant change in the hydrodynamic height of the adsorbed liposomes, upon adding glucose. This observation suggests that instead of osmotic deflation, glucose enhances the contact area via adhesion forces, presumably due to the depletion of the glucose molecules from the intermembrane hydration layer.


Subject(s)
Cell Membrane/metabolism , Glucose/chemistry , Liposomes/chemistry , Liposomes/metabolism , Movement , Adhesiveness , Diffusion , Lipid Bilayers/metabolism
5.
Anal Chem ; 90(3): 2238-2245, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29237261

ABSTRACT

The quartz crystal microbalance (QCM) is a surface-sensitive measurement technique to characterize adsorption processes at solid-fluid interfaces. While QCM measurements are routinely applied to study homogeneous thin films, characterizing heterogeneous films of adsorbed particles remains challenging because QCM is sensitive to not only the mass of adsorbed particles but also to that of hydrodynamically coupled fluid. To extract information about adsorbed particles, it is necessary to model these hydrodynamic effects, however, current QCM models are restricted to the limit of either a very low surface coverage or to the extrapolated limit of saturation coverage. Herein, we investigated QCM measurement responses in the intermediate surface coverage regime, by conducting lattice Boltzmann simulations of monodisperse, spherical particles that are attached to an oscillating surface. From the simulations, we relate the overtone-dependent QCM frequency and bandwidth shifts to particle size, interparticle distance, and the relevant hydrodynamic length scale. The corresponding results are in qualitative agreement with experimental QCM data for sub-100 nm, gel-phase liposomes. Furthermore, the data provide a theoretical basis for extracting particle sizes from QCM data in the high surface coverage limit.

6.
Anal Chem ; 89(21): 11711-11718, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28933837

ABSTRACT

Characterizing the deformation of nanoscale, soft-matter particulates at solid-liquid interfaces is a demanding task, and there are limited experimental options to perform quantitative measurements in a nonperturbative manner. Previous attempts, based on the quartz crystal microbalance (QCM) technique, focused on the high surface coverage regime and modeled the adsorbed particles as a homogeneous film, while not considering the coupling between particles and surrounding fluid and hence resulting in an underestimation of the known particle height. In this work, we develop a model for the hydrodynamic coupling between adsorbed particles and surrounding fluid in the limit of a low surface coverage, which can be used to extract shape information from QCM measurement data. We tackle this problem by using hydrodynamic simulations of an ellipsoidal particle on an oscillating surface. From the simulation results, we derived a phenomenological relation between the aspect ratio r of the absorbed particles and the slope and intercept of the line that fits instantaneous, overtone-dependent QCM data on (δ/a, -Δf/n) coordinates where δ is the viscous penetration depth, a is the particle radius, Δf is the QCM frequency shift, and n is the overtone number. The model was applied to QCM measurement data pertaining to the adsorption of 34 nm radius, fluid-phase and gel-phase liposomes onto a titanium oxide-coated surface. The osmotic pressure across the liposomal bilayer was varied to induce shape deformation. By combining these results with a membrane bending model, we determined the membrane bending energy for the gel-phase liposomes, and the results are consistent with literature values. In summary, a phenomenological model is presented and validated in order to show for the first time that QCM experiments can quantitatively measure the deformation of adsorbed particles at low surface coverage.

7.
Analyst ; 142(18): 3370-3379, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28861585

ABSTRACT

One challenging aspect of quartz crystal microbalance (QCM) measurements is the characterization of adsorbed particles as the change in resonance frequency (Δf) is proportional not only to the inertia of the adsorbed layer but also to that of the hydrodynamically coupled fluid. Herein, by solving numerically the Navier-Stokes equations, we scrutinize Δf for sparsely deposited, rigid spherical particles that are firmly attached to an oscillating surface. The analysis is shown to be applicable to adsorbed, small unilamellar vesicles (SUVs) of controlled size under experimental conditions in which adhesion-induced vesicle deformation is negligible. The model supports a hydrodynamic explanation for the overtone dependence of Δf, and was fitted to experimental data concerning three monodisperse populations of SUVs with different average sizes ranging between 56 and 114 nm diameter. Using this procedure, we determined the average size of adsorbed vesicles to be within 16% of the size that was measured by dynamic light scattering experiments in bulk solution. In conclusion, this model offers a means to extract the particle size from QCM-D measurement data, with applications to biological and synthetic nanoparticles.

8.
Small ; 12(46): 6338-6344, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27689775

ABSTRACT

Particle tracking is used to measure the diffusional motion of nanosized (≈100 nm), lipid vesicles that are electrostatically adsorbed onto a solid supported lipid bilayer. It is found that the motion of membrane-adhering vesicles is Brownian and depends inversely on the vesicle size, but is insensitive to the vesicle surface charge. The measured diffusivity agrees well with the Evans-Sackmann model for the diffusion of inclusions in supported, fluidic membranes. The agreement implies that the vesicle motion is coupled to that of a nanoscopic lipid cluster in the upper leaflet, which slides over the lower leaflet. The diffusivity of membrane-adhering vesicles is therefore predominantly governed by the interleaflet friction coefficient, while the diffusivity of single lipids is mainly governed by the membrane viscosity. Combined with fluorescence recovery after photobleaching analysis, the interleaflet friction coefficient and the membrane viscosity are determined by applying the Evans-Sackmann model to the measured diffusivity of membrane adhering vesicles and that of supported membrane lipids. This approach provides an alternative to existing methods for measuring the interleaflet friction coefficient and the membrane viscosity.


Subject(s)
Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Static Electricity , Viscosity
9.
ACS Nano ; 10(9): 8812-20, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27603118

ABSTRACT

The efficiency of lipid nanoparticle uptake across cellular membranes is strongly dependent on the very first interaction step. Detailed understanding of this step is in part hampered by the large heterogeneity in the physicochemical properties of lipid nanoparticles, such as liposomes, making conventional ensemble-averaging methods too blunt to address details of this complex process. Here, we contribute a means to explore whether individual liposomes become deformed upon binding to fluid cell-membrane mimics. This was accomplished by using hydrodynamic forces to control the propulsion of nanoscale liposomes electrostatically attracted to a supported lipid bilayer. In this way, the size of individual liposomes could be determined by simultaneously measuring both their individual drift velocity and diffusivity, revealing that for a radius of ∼45 nm, a close agreement with dynamic light scattering data was observed, while larger liposomes (radius ∼75 nm) displayed a significant deformation unless composed of a gel-phase lipid. The relevance of being able to extract this type of information is discussed in the context of membrane fusion and cellular uptake.


Subject(s)
Lipid Bilayers , Liposomes , Cell Membrane , Hydrodynamics , Nanoparticles
10.
Phys Chem Chem Phys ; 18(35): 24157-63, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27530868

ABSTRACT

The recently introduced solvent-assisted lipid bilayer (SALB) formation method allows one to efficiently fabricate planar, lipid bilayers on solid supports and can be used for various applications. It involves the introduction of an aqueous buffer into a mixture of lipid and alcohol, which is incubated on a solid support. The associated phase changes in the ternary bulk system are accompanied by the formation of a lipid bilayer at the solid-liquid interface. While the phase behavior of the ternary bulk system is well understood, the mechanism of bilayer assembly at the solid-liquid interface remains to be elucidated, including whether the adsorption process is limited by diffusion of the lipid in the bulk or by lipid binding kinetics onto the surface. Such factors strongly influence the success of bilayer formation as they pertain to operating conditions, such as lipid concentration, solvent exchange rate and chamber dimensions, and are hence of critical importance for SALB fabrication strategies. Herein, we extend an earlier proposed phenomenological kinetic model of the SALB formation process, based on a volume-averaged treatment of the solvent mixing process. By comparing the model to quartz crystal microbalance with dissipation monitoring (QCM-D) experimental data, we conclude that SALB formation is limited by diffusion of suspended lipid aggregates, with a hydrodynamic radius, that is consistent with aggregate size measurements in the literature. This agreement validates the proposed model to serve as the basis for optimizing conditions for SALB formation.

11.
Nanoscale ; 8(27): 13513-20, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27355613

ABSTRACT

The interaction of nanoscale lipid vesicles with cell membranes is of fundamental importance for the design and development of vesicular drug delivery systems. Here, we introduce a novel approach to study vesicle-membrane interactions whereby we are able to probe the influence of nanoscale membrane properties on the dynamic adsorption, exchange, and detachment of vesicles. Using total internal reflection fluorescence (TIRF) microscopy, we monitor these processes in real-time upon the electrostatically tuned attachment of individual, sub-100 nm vesicles to a supported lipid bilayer. The observed exponential vesicle detachment rate depends strongly on the vesicle size, but not on the vesicle charge, which suggests that lipid exchange occurs during a single stochastic event, which is consistent with membrane stalk formation. The fluorescence microscopy assay developed in this work may enable measuring of the probability of stalk formation in a controlled manner, which is of fundamental importance in membrane biology, offering a new tool to understand nanoscale phenomena in the context of biological sciences.

12.
Langmuir ; 32(21): 5445-50, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27164321

ABSTRACT

Using single-particle tracking, we investigate the interaction of small unilamellar vesicles (SUVs) that are electrostatically tethered to the freestanding membrane of a giant unilamellar vesicle (GUV). We find that the surface mobility of the GUV-riding SUVs is Brownian, insensitive to the bulk viscosity, vesicle size, and vesicle fluidity but strongly altered by the viscosity of the underlying membrane. Analyzing the diffusional behavior of SUVs within the Saffman-Delbrück model for the dynamics of membrane inclusions supports the notion that the mobility of the small vesicles is coupled to that of dynamically induced lipid clusters within the target GUV membrane. The reversible binding also offers a nonperturbative means for measuring the viscosity of biomembranes, which is an important parameter in cell physiology and function.

13.
Phys Chem Chem Phys ; 17(46): 31145-51, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26539669

ABSTRACT

The solvent-assisted lipid bilayer (SALB) method offers a general strategy to fabricate supported lipid bilayers on solid surfaces. In this method, lipids dissolved in alcohol are deposited on the target substrate in parallel with their aggregation during exchange with aqueous buffer solution which promotes spontaneous bilayer formation. Herein, a combination of experimental and theoretical approaches is employed in order to understand the key aspects of the SALB formation process. Epifluorescence microscopy experiments are conducted in order to measure the spatiotemporal dynamics of bilayer formation on a glass substrate in a microfluidic channel. Corresponding snapshots of bilayer formation at different stages are rationalized by a numerical simulation of solvent displacement inside the channel. Comparing simulation with experiment indicates that in close proximity to the side walls of the present setup, the bilayer formation is confined to a relatively thin region behind the moving solvent displacement front.


Subject(s)
Lipid Bilayers/chemistry , Solvents/chemistry , Fluorescence Recovery After Photobleaching , Fluorescent Dyes/chemistry , Microscopy, Fluorescence , Phosphatidylcholines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...