Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 96(2): 171-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20889604

ABSTRACT

Reducing the activating calcium concentration with skinned fibres is known to decrease isometric force and maximal shortening velocity, both of which will reduce the peak power. However, power is also a function of the curvature of the force-velocity relationship, and there is limited information on how changes in activating calcium affect this important property of muscle fibres. Force-velocity relationships of permeabilized single type I fibres from rat soleus muscle were determined using isotonic contractions at 15°C with both maximal (pCa 4.5) and submaximal activation (pCa 5.6). The rate of tension redevelopment (k(tr)), which provides a measure of sum of the apparent rate constants for cross-bridge attachment and detachment (f(app) + g(app)) following a rapid release and restretch, was also measured. Compared with pCa 4.5, specific tension (P(o)) at pCa 5.6 declined by 22 ± 8% (mean ± s.d.) and the maximal velocity of shortening (V(max)) fell by 44 ± 7%, but curvature of the force-velocity relationship (a/P(o)) rose by 47 ± 31%, indicating a less concave relationship. The value of k(tr) declined by 23 ± 7%. The change in a/P(o) reduced the impact of changes in P(o) and V(max) on peak power by approximately 25%. Fitting the data to Huxley's model of cross-bridge action suggests that lower activating calcium decreased both the rate constant for cross-bridge attachment (f) and that for detachment of negatively strained cross-bridges (g(2)). The fact that V(max) (and thus g(2)) changed to a greater extent than k(tr) (f(app) + g(app)) is the reason that reduced activation results in a reduction in curvature of the force-velocity relationship.


Subject(s)
Electric Stimulation , Muscle Contraction/physiology , Muscle Fibers, Slow-Twitch/physiology , Muscle Strength/physiology , Animals , Cells, Cultured , Rats , Rats, Sprague-Dawley
2.
J Musculoskelet Neuronal Interact ; 10(4): 267-73, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21116063

ABSTRACT

Oxidation alters calcium sensitivity, and decreases maximum isometric force (Po) and shortening velocity (Vmax) of single muscle fibres. To examine the effect of oxidation on the curvature of the force-velocity relationship, which determines muscle power in addition to Po and Vmax, skinned rat type I fibres were maximally activated at 15°C in a solution with pCa 4.5 and subjected to isotonic contractions before and after 4-min incubation in 50 mM H2O2 (n=10) or normal relaxing solution (n=3). In five oxidised and four control fibres the rate of force redevelopment (ktr), following a rapid release and re-stretch, was measured. This gives a measure of the sum of the rate constants for cross-bridge attachment (f) and detachment (g1): (f+g1). H2O2 reduced Po, Vmax and ktr by 19%, 21% and 24% respectively (P<0.001), while the shape of the force-velocity relationship was unchanged. Fitting data to the Huxley cross-bridge model suggested that oxidation decreased both the rate constant for cross-bridge attachment (f), and detachment of negatively strained cross-bridges (g2), similar to the effect of reduced activation. This suggests that oxidative modification is a possible cause of the variation in contractile properties between muscle fibres of the same type.


Subject(s)
Energy Metabolism/physiology , Muscle Contraction/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Animals , Cross-Linking Reagents/pharmacology , Energy Metabolism/drug effects , Male , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/drug effects , Oxidation-Reduction/drug effects , Rats , Rats, Sprague-Dawley , Rats, Wistar
3.
Article in English | MEDLINE | ID: mdl-19949281

ABSTRACT

OBJECTIVE: To investigate whether athletic participation allows master athletes to preserve their good bone health into old age. METHODS: Bone strength indicators of the tibia and the radius were obtained of master runners and race-walkers (n=300) competing at World and European Master Championships and of 75 sedentary controls, all aged 33-94 yrs. RESULTS: In the tibia, diaphyseal cortical area (Ar.Ct), polar moment of resistance (RPol) and trabecular bone mineral density (vBMD) were generally greater in athletes than controls at all ages. In the athletes, but not the controls, Ar.Ct, RPol (females) and trabecular vBMD were negatively correlated with age (p<0.01). Radius measures were comparable between athlete and control groups at all ages. The amalgamated data revealed negative correlations of age with Ar.Ct, RPol (females), cortical vBMD and trabecular vBMD (males; p<0.005) and positive correlations with endocortical circumference (p<0.001). CONCLUSION: This cross-sectional study found age-related differences in tibial bone strength indicators of master athletes, but not sedentary controls, thus, groups becoming more similar with advancing age. Age-related differences were noticeable in the radius too, without any obvious group difference. Results are compatible with the notion that bones adapt to exercise-specific forces throughout the human lifespan.


Subject(s)
Aging/physiology , Bone Density/physiology , Bone and Bones/physiology , Exercise/physiology , Adult , Age Factors , Aged , Aged, 80 and over , Analysis of Variance , Bone and Bones/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Organ Size , Radiography , Regression Analysis , Running , Sex Factors
4.
Exp Physiol ; 94(10): 1070-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19638363

ABSTRACT

We have explored the extent to which the maximal velocity of unloaded shortening (V(max)), the force generated per unit cross-sectional area (P(0)) and the curvature of the force-velocity relationship (a/P(0) in the Hill equation) contribute to differences in peak power of chemically skinned single fibres from the quadriceps muscle of healthy young male subjects. The analysis was restricted to type I and IIA fibres that contained a single type of myosin heavy chain on electrophoretic separation. Force-velocity relationships were determined from isotonic contractions of maximally activated fibres at 15 degrees C. Mean (+/- s.d.) peak powers were 1.99 +/- 0.72 watts per litre (W L(-1)) for type I fibres and 6.92 +/- 2.41 W L(-1), for type IIA fibres. The most notable feature, however, was the very large, sevenfold, range of power outputs within a single fibre type. This wide range was a consequence of variations in each of the three components determining power: P(0), V(max) and a/P(0). Within a single fibre type, P(0) varied threefold, and V(max) and a/P(0) two- to threefold. There were no obvious relationships between P(0) and V(max) or between P(0) and a/P(0). However, there was a suggestion of an inverse relationship between a/P(0) and V(max), the effect being to reduce, somewhat, the impact of differences in V(max) on peak power. In searching for the causes of variation in peak power of fibres of the same type, it appears likely that there are two factors, one that affects P(0) and another that leads to variation in both V(max) and a/P(0).


Subject(s)
Muscle Fibers, Skeletal/physiology , Adolescent , Adult , Data Interpretation, Statistical , Electrophoresis, Polyacrylamide Gel , Humans , In Vitro Techniques , Isometric Contraction/physiology , Kinetics , Male , Muscle Contraction/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Myosin Heavy Chains/metabolism , Young Adult
5.
Bone ; 45(1): 91-7, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19332164

ABSTRACT

Mechanical loading is thought to be a determinant of bone mass and geometry. Both ground reaction forces and tibial strains increase with running speed. This study investigates the hypothesis that surrogates of bone strength in male and female master sprinters, middle and long distance runners and race-walkers vary according to discipline-specific mechanical loading from sedentary controls. Bone scans were obtained by peripheral Quantitative Computed Tomography (pQCT) from the tibia and from the radius in 106 sprinters, 52 middle distance runners, 93 long distance runners and 49 race-walkers who were competing at master championships, and who were aged between 35 and 94 years. Seventy-five age-matched, sedentary people served as control group. Most athletes of this study had started to practice their athletic discipline after the age of 20, but the current training regime had typically been maintained for more than a decade. As hypothesised, tibia diaphyseal bone mineral content (vBMC), cortical area and polar moment of resistance were largest in sprinters, followed in descending order by middle and long distance runners, race-walkers and controls. When compared to control people, the differences in these measures were always >13% in male and >23% in female sprinters (p<0.001). Similarly, the periosteal circumference in the tibia shaft was larger in male and female sprinters by 4% and 8%, respectively, compared to controls (p<0.001). Epiphyseal group differences were predominantly found for trabecular vBMC in both male and female sprinters, who had 15% and 18% larger values, respectively, than controls (p<0.001). In contrast, a reverse pattern was found for cortical vBMD in the tibia, and only few group differences of lower magnitude were found between athletes and control people for the radius. In conclusion, tibial bone strength indicators seemed to be related to exercise-specific peak forces, whilst cortical density was inversely related to running distance. These results may be explained in two, non-exclusive ways. Firstly, greater skeletal size may allow larger muscle forces and power to be exerted, and thus bias towards engagement in athletics. Secondly, musculoskeletal forces related to running can induce skeletal adaptation and thus enhance bone strength.


Subject(s)
Radius/anatomy & histology , Radius/diagnostic imaging , Running/physiology , Tibia/anatomy & histology , Tibia/diagnostic imaging , Tomography, X-Ray Computed , Walking/physiology , Adult , Aged , Aged, 80 and over , Case-Control Studies , Diaphyses/anatomy & histology , Exercise/physiology , Female , Humans , Male , Middle Aged , Organ Size , Puberty
SELECTION OF CITATIONS
SEARCH DETAIL
...