Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 103(6): 1463-1475, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37642401

ABSTRACT

Brackish water ecosystems often have high primary production, intermediate salinities, and fluctuating physical conditions and therefore provide challenging environments for many of their inhabitants. This is especially true of the Baltic Sea, which is a large body of brackish water under strong anthropogenic influence. One freshwater species that is able to cope under these conditions in the northern Baltic Sea is the vendace (Coregonus albula), a small salmonid fish. Here, we review the current knowledge of its ecology and fishery in this brackish water environment. The literature shows that, by competing for resources with other planktivores and being an important prey for a range of larger species, C. albula plays a notable role in the northern Baltic Sea ecosystem. It also sustains significant fisheries in the coastal waters of Sweden and Finland. We identify the need to better understand these C. albula populations in terms of the predator-prey interactions, distributions of anadromous and sea spawning populations and other putative (eco)morphs, extent of gene exchange between the populations, and effects of climate change on their future. In this regard, we recommend strengthening C. albula-related research and management efforts by improved collaboration and coordination between research institutions, other governmental agencies, and fishers, as well as by harmonization of fishery policies across national borders.


Subject(s)
Ecosystem , Salmonidae , Animals , Fisheries , Ecology , Salmonidae/genetics , Fresh Water
2.
J Anim Ecol ; 88(11): 1657-1669, 2019 11.
Article in English | MEDLINE | ID: mdl-31330040

ABSTRACT

Land-use and climate change are two of the primary drivers of the current biodiversity crisis. However, we lack understanding of how single-species and multispecies associations are affected by interactions between multiple environmental stressors. We address this gap by examining how environmental degradation interacts with daily stochastic temperature variation to affect individual life history and population dynamics in a host-parasitoid trophic interaction, using the Indian meal moth, Plodia interpunctella, and its parasitoid wasp Venturia canescens. We carried out a single-generation individual life-history experiment and a multigeneration microcosm experiment during which individuals and microcosms were maintained at a mean temperature of 26°C that was either kept constant or varied stochastically, at four levels of host resource degradation, in the presence or absence of parasitoids. At the individual level, resource degradation increased juvenile development time and decreased adult body size in both species. Parasitoids were more sensitive to temperature variation than their hosts, with a shorter juvenile stage duration than in constant temperatures and a longer adult life span in moderately degraded environments. Resource degradation also altered the host's response to temperature variation, leading to a longer juvenile development time at high resource degradation. At the population level, moderate resource degradation amplified the effects of temperature variation on host and parasitoid populations compared with no or high resource degradation and parasitoid overall abundance was lower in fluctuating temperatures. Top-down regulation by the parasitoid and bottom-up regulation driven by resource degradation contributed to more than 50% of host and parasitoid population responses to temperature variation. Our results demonstrate that environmental degradation can strongly affect how species in a trophic interaction respond to short-term temperature fluctuations through direct and indirect trait-mediated effects. These effects are driven by species differences in sensitivity to environmental conditions and modulate top-down (parasitism) and bottom-up (resource) regulation. This study highlights the need to account for differences in the sensitivity of species' traits to environmental stressors to understand how interacting species will respond to simultaneous anthropogenic changes.


Subject(s)
Wasps , Animals , Biodiversity , Climate Change , Host-Parasite Interactions , Temperature
3.
Nat Commun ; 6: 8412, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26400367

ABSTRACT

Loss of one species in an ecosystem can trigger extinctions of other dependent species. For instance, specialist predators will go extinct following the loss of their only prey unless they can change their diet. It has therefore been suggested that an ability of consumers to rewire to novel prey should mitigate the consequences of species loss by reducing the risk of cascading extinction. Using a new modelling approach on natural and computer-generated food webs we find that, on the contrary, rewiring often aggravates the effects of species loss. This is because rewiring can lead to overexploitation of resources, which eventually causes extinction cascades. Such a scenario is particularly likely if prey species cannot escape predation when rare and if predators are efficient in exploiting novel prey. Indeed, rewiring is a two-edged sword; it might be advantageous for individual predators in the short term, yet harmful for long-term system persistence.


Subject(s)
Adaptation, Physiological , Ecosystem , Extinction, Biological , Food Chain , Predatory Behavior , Animals , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...