Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 61(1): 141-153, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34939800

ABSTRACT

We present the magnetic properties of a new family of S = 1 molecule-based magnets, NiF2(3,5-lut)4·2H2O and NiX2(3,5-lut)4, where X = HF2, Cl, Br, or I (lut = lutidine C7H9N). Upon creation of isolated Ni-X···X-Ni and Ni-F-H-F···F-H-F-Ni chains separated by bulky and nonbridging lutidine ligands, the effect that halogen substitution has on the magnetic properties of transition-metal-ion complexes can be investigated directly and in isolation from competing processes such as Jahn-Teller distortions. We find that substitution of the larger halide ions turns on increasingly strong antiferromagnetic interactions between adjacent Ni2+ ions via a novel through-space two-halide exchange. In this process, the X···X bond lengths in the Br and I materials are more than double the van der Waals radius of X yet can still mediate significant magnetic interactions. We also find that a simple model based on elongation/compression of the Ni2+ octahedra cannot explain the observed single-ion anisotropy in mixed-ligand compounds. We offer an alternative that takes into account the difference in the electronegativity of axial and equatorial ligands.

2.
Acta Crystallogr A Found Adv ; 77(Pt 2): 96-104, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33646195

ABSTRACT

A new crystallographic method is proposed in order to refine a spin-resolved atomic orbital model against X-ray and polarized neutron diffraction data. This atomic orbital model is applied to the YTiO3 perovskite crystal, where orbital ordering has previously been observed by several techniques: X-ray diffraction, polarized neutron diffraction and nuclear magnetic resonance. This method gives the radial extension, orientation and population of outer atomic orbitals for each atom. The interaction term between Ti3+, Y3+ cations and O2- ligands has been estimated. The refinement statistics obtained by means of the orbital method are compared with those obtained by the multipole model previously published.

3.
IUCrJ ; 6(Pt 5): 884-894, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31576221

ABSTRACT

The present work reports on the charge and spin density modelling of YTiO3 in its ferromagnetic state (T C = 27 K). Accurate polarized neutron diffraction and high-resolution X-ray diffraction (XRD) experiments were carried out on a single crystal at the ORPHÉE reactor (LLB) and SPRING8 synchrotron source. The experimental data are modelled by the spin resolved pseudo-atomic multipolar model (Deutsch et al., 2012 ▸). The refinement strategy is discussed and the result of this electron density modelling is compared with that from XRD measured at 100 K and with density functional theory calculations. The results show that the spin and charge densities around the Ti atom have lobes directed away from the O atoms, confirming the filling of the t 2g orbitals of the Ti atom. The d xy orbital is less populated than d xz and d yz , which is a sign of a partial lift of degeneracy of the t 2g orbitals. This study confirms the orbital ordering at low temperature (20 K), which is already present in the paramagnetic state above the ferromagnetic transition (100 K).

4.
Chemistry ; 25(52): 12120-12136, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31461188

ABSTRACT

The local magnetic structure in the [FeIII (Tp)(CN)3 ]- building block was investigated by combining paramagnetic Nuclear Magnetic Resonance (pNMR) spectroscopy and polarized neutron diffraction (PND) with first-principle calculations. The use of the pNMR and PND experimental techniques revealed the extension of spin-density from the metal to the ligands, as well as the different spin mechanisms that take place in the cyanido ligands: Spin-polarization on the carbon atoms and spin-delocalization on the nitrogen atoms. The results of our combined density functional theory (DFT) and multireference calculations were found in good agreement with the PND results and the experimental NMR chemical shifts. Moreover, the ab-initio calculations allowed us to connect the experimental spin-density map characterized by PND and the suggested distribution of the spin-density on the ligands observed by NMR spectroscopy. Interestingly, significant differences were observed between the pseudo-contact contributions of the chemical shifts obtained by theoretical calculations and the values derived from NMR spectroscopy using a simple point-dipole model. These discrepancies underline the limitation of the point-dipole model and the need for more elaborate approaches to break down the experimental pNMR chemical shifts into contact and pseudo-contact contributions.

5.
Chemistry ; 24(62): 16576-16581, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30095193

ABSTRACT

The anisotropy of the magnetic properties of molecular magnets is a key descriptor in the search for improved magnets. Herein, it is shown how an analytical approach using single-crystal polarized neutron diffraction (PND) provides direct access to atomic magnetic susceptibility tensors. The technique was applied for the first time to two Dy-based single-molecule magnets and showed clear axial atomic susceptibility for both DyIII ions. For the triclinic system, bulk magnetization methods are not symmetry-restricted, and the experimental magnetic easy axes from both PND, angular-resolved magnetometry (ARM), and theoretical approaches all match reasonably well. ARM curves simulated from the molecular susceptibility tensor determined with PND show strong resemblance with the experimental ones. For the monoclinic compound, comparison can only be made with the theoretically calculated magnetic anisotropy, and in this case PND yields an easy-axis direction that matches that predicted by electrostatic methods. Importantly, this technique allows the determination of all elements of the magnetic susceptibility tensor and not just the easy-axis direction, as is available from electrostatic predictions. Furthermore, it has the capacity to provide each of the anisotropic magnetic susceptibility tensors for all independent magnetic ions in a molecule and thus allows studies on polynuclear complexes and compounds of higher crystalline symmetry than triclinic.

6.
J Chem Phys ; 148(16): 164106, 2018 Apr 28.
Article in English | MEDLINE | ID: mdl-29716230

ABSTRACT

In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO3 crystal along the Ti-O1-Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.

7.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 544-549, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28762966

ABSTRACT

Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.

8.
Angew Chem Int Ed Engl ; 55(12): 3963-7, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26890339

ABSTRACT

We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes.

9.
Chemistry ; 22(2): 724-35, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26728231

ABSTRACT

Polarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high-spin cobalt(II) complexes, namely [Co(II) (dmf)6 ](BPh4 )2 (1) and [Co(II) 2 (sym-hmp)2 ](BPh4 )2 (2), in which dmf=N,N-dimethylformamide; sym-hmp=2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate, and BPh4 (-) =tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual Co(II) site. In compound 1, this approach reveals the correlation between the single-ion easy magnetization direction and a trigonal elongation axis of the Co(II) coordination octahedron. In exchange-coupled dimer 2, the determination of the individual Co(II) magnetic susceptibility tensors provides a clear outlook of how the local magnetic properties on both Co(II) sites deviate from the single-ion behavior because of antiferromagnetic exchange coupling.

10.
Dalton Trans ; 44(30): 13439-43, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26150171

ABSTRACT

A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

11.
IUCrJ ; 1(Pt 3): 194-9, 2014 May 01.
Article in English | MEDLINE | ID: mdl-25075338

ABSTRACT

Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

12.
Acta Crystallogr A ; 68(Pt 6): 675-86, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23075610

ABSTRACT

New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

13.
Chemistry ; 14(31): 9540-8, 2008.
Article in English | MEDLINE | ID: mdl-18792037

ABSTRACT

The paper reports the synthesis, X-ray and neutron diffraction crystal structures, magnetic properties, high field-high frequency EPR (HF-EPR), spin density and theoretical description of the tetranuclear CuII complex [Cu4L4] with cubane-like structure (LH2=1,1,1-trifluoro-7-hydroxy-4-methyl-5-aza-hept-3-en-2-one). The simulation of the magnetic behavior gives a predominant ferromagnetic interaction J1 (+30.5 cm(-1)) and a weak antiferromagnetic interaction J2 (-5.5 cm(-1)), which correspond to short and long Cu-Cu distances, respectively, as evidence from the crystal structure [see formulate in text]. It is in agreement with DFT calculations and with the saturation magnetization value of an S=2 ground spin state. HF-EPR measurements at low temperatures (5 to 30 K) provide evidence for a negative axial zero-field splitting parameter D (-0.25+/-0.01 cm(-1)) plus a small rhombic term E (0.025+/-0.001 cm(-1), E/D = 0.1). The experimental spin distribution from polarized neutron diffraction is mainly located in the basal plane of the CuII ion with a distortion of yz-type for one CuII ion. Delocalization on the ligand (L) is observed but to a smaller extent than expected from DFT calculations.

14.
Inorg Chem ; 46(4): 1090-9, 2007 Feb 19.
Article in English | MEDLINE | ID: mdl-17291109

ABSTRACT

Exchange mechanisms and magnetic structure in the two-dimensional cyano-bridged molecule-based magnet K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O have been investigated by a combination of neutron diffraction studies on both single crystal and powder samples and theoretical DFT calculations. The experimental spin density has been deduced from a new refinement of previously obtained polarized neutron diffraction (PND) data which was collected in the ordered magnetic state at 4 K under a saturation field of 3 T performed in the C2/c space group, determined by an accurate re-evaluation of the X-ray structure. Positive spin populations were observed on the two manganese sites, and negative spin populations were observed on the molybdenum site, which provides evidence of antiferromagnetic Mo3+-Mn2+ exchange interactions through the cyano bridge. The experimental data have been compared to the results of DFT calculations. Moreover, theoretical studies reveal the predominance of the spin polarization mechanism in the Mo-C-N-Mn sequence, with the antiferromagnetic nature of the interaction being due to the overlap between the magnetic orbitals relative to manganese and molybdenum in the cyano bridging region. The magnetic structure of K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O has been solved at low temperature in zero field by powder neutron diffraction measurements. The structure was found to be ferrimagnetic where the manganese and molybdenum spins are aligned along the axis in opposite directions.

15.
Chemistry ; 13(13): 3666-74, 2007.
Article in English | MEDLINE | ID: mdl-17285651

ABSTRACT

A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.

17.
J Am Chem Soc ; 124(48): 14433-41, 2002 Dec 04.
Article in English | MEDLINE | ID: mdl-12452719

ABSTRACT

The spin population distribution in the ferromagnetically coupled hetero-bimetallic chain compound [MnNi(NO(2))(4)(en)(2)] (en = 1,2-ethanediamine) has been investigated by means of polarized neutron diffraction experiments, and the results compared with those from theoretical estimates obtained via calculations based on density functional theory on dinuclear molecular models of the chain. The spin distributions obtained from experiment and from theory are consistent and reflect a larger spin delocalization from the Ni atom due to the more covalent character of the Ni-N bonds compared to the Mn-O ones. Also a nearly isotropic spin distribution is observed for the more ionic d(5) Mn(2+) ion and a clearly anisotropic distribution for the d(8) Ni(2+) ion. The use of dinuclear molecular models for the calculation of the exchange coupling constant between Ni and Mn provide upper and lower limits (+17.6 and -4.2 cm(-)(1)) for the experimentally determined value (+1.3 cm(-)(1)), depending on how the missing part of the chain is simulated, but yield essentially the same spin distribution. The Mn(II)-Ni(II) weak ferromagnetic coupling in the chain is interpreted in a spin delocalization mechanism as resulting from the weakness of the overlap between the magnetic orbitals centered on nickel and those centered on manganese which are only weakly delocalized on the ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...