Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chemosphere ; 351: 141161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218234

ABSTRACT

Increasing energy demands combined with local scarcities and rising prices make the valorisation of energy from domestic wastewater seen as a valuable resource. Chemically enhanced primary treatment (CEPT) enables an increased redirection of organic compounds into sludge in the primary stage of a wastewater treatment for a transformation into biogas (carbon capture). Traditionally used coagulants consist of metallic salts, but in the last two decades, the development of polymers, based on petroleum or synthesized from renewable sources such as plants, has been intensified. However, a direct comparison of the effectiveness of these products is missing. In this paper, we analysed data of peer-reviewed research from jar tests to full-scale studies, highlighting key parameters for successful carbon capture. More than 100 studies were identified, with a majority presenting results from tests under static conditions (jar tests), while data on full-scale applications are scarce. Overall, for TSS and COD, a clear correlation between inflow concentration and removal efficiency was found, irrespective of the product used. Comparison between the effectiveness of the different types of products is difficult, but bio-based coagulants need to be generally added in higher product concentrations for a considerable removal efficiency. While CEPT seems to increase the general sludge and biogas output, future studies should focus on harmonising laboratory analysis to make results comparable. Another important issue that should be addressed is the provision of experimental details, especially for full-scale trials, to enable for reliable conclusions.


Subject(s)
Sewage , Wastewater , Sewage/chemistry , Waste Disposal, Fluid/methods , Carbon , Biofuels
2.
Water Res ; 232: 119620, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36780748

ABSTRACT

This review compiles information on sidestream characteristics that result from anaerobic digestion dewatering (conventional and preceded by a thermal hydrolysis process), biological and primary sludge thickening. The objective is to define a range of concentrations for the different characteristics found in literature and to confront them with the optimal operating conditions of sidestream processes for nutrient treatment or recovery. Each characteristic of sidestream (TSS, VSS, COD, N, P, Al3+, Ca2+, Cl-, Fe2+/3+, Mg2+, K+, Na+, SO42-, heavy metals, micro-pollutants and pathogens) is discussed according to the water resource recovery facility configuration, wastewater characteristics and implications for the recovery of nitrogen and phosphorus based on current published knowledge on the processes implemented at full-scale. The thorough analysis of sidestream characteristics shows that anaerobic digestion sidestreams have the highest ammonium content compared to biological and primary sludge sidestreams. Phosphate content in anaerobic digestion sidestreams depends on the type of applied phosphorus treatment but is also highly dependent on precipitation reactions within the digester. Thermal Hydrolysis Process (THP) mainly impacts COD, N and alkalinity content in anaerobic digestion sidestreams. Surprisingly, the concentration of phosphate is not higher compared to conventional anaerobic digestion, thus offering more attractive recovery possibilities upstream of the digester rather than in sidestreams. All sidestream processes investigated in the present study (struvite, partial nitrification/anammox, ammonia stripping, membranes, bioelectrochemical system, electrodialysis, ion exchange system and algae production) suffer from residual TSS in sidestreams. Above a certain threshold, residual COD and ions can also deteriorate the performance of the process or the purity of the final nutrient-based product. This article also provides a list of characteristics to measure to help in the choice of a specific process.


Subject(s)
Sewage , Water Resources , Sewage/chemistry , Wastewater , Phosphates , Phosphorus , Nitrogen , Bioreactors , Anaerobiosis , Waste Disposal, Fluid
3.
Water Res ; 226: 119044, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36272198

ABSTRACT

In response to the growing global resource scarcity, wastewater is increasingly seen as a valuable resource to recover and valorise for the benefit of the society rather than another waste that needs treatment before disposal. Conventional wastewater treatment plants (WWTPs) oxidise most of the organic matter present in wastewater, instead of recovering it as a feedstock for biomaterials or to produce energy in the form of biogas. In contrast, an A-Stage is capable of producing a concentrated stream of organic matter ready for valorisation, ideally suited to retrofit existing large plants. This technology is based on the principle of high-rate activated sludge process that favours biosorption and storage over oxidation. In this paper, we summarize peer-reviewed research of both pilot-scale and full-scale studies of A-Stage process under real conditions, highlighting key operational parameters. In the majority of published studies, the sludge retention time (SRT) was identified as a key operational parameter. An optimal SRT of 0.3 days seems to maximize the redirection of influent COD - up to 50% to the sludge flux, while simultaneously keeping mineralization under 25% of total influent COD. Other key optimal parameters are a hydraulic residence time of 30 min and dissolved oxygen levels of 0.5 mg⋅L-1. In addition, nutrient removal efficiencies of 15-27% for total nitrogen and 13-38% for total phosphorus are observed. Influence of mixing on settling efficiencies remain largely underexplored, as well as impact of wet weather flow and temperature on overall recovery efficiencies, which hinders to provide recommendations on these aspects. Evolution of modelling efforts of A-Stage process are also critically reviewed. The role of extracellular polymeric substances remain unclear and measures differ greatly according to the different studies and protocols. Better understanding the settling processes by adding Limit of Stokesian and Threshold of Flocculation measures to Sludge Volume Index could help to reach a better understanding of the A-Stage process. Reliable modelling can help new unit processes find their place in the whole treatment chain and help the transition from WWTPs towards Wastewater Resource Recovery Facilities.


Subject(s)
Sewage , Wastewater , Waste Disposal, Fluid/methods , Bioreactors , Biological Oxygen Demand Analysis
4.
Water Sci Technol ; 80(4): 607-619, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31661440

ABSTRACT

Gas-liquid mass transfer in wastewater treatment processes has received considerable attention over the last decades from both academia and industry. Indeed, improvements in modelling gas-liquid mass transfer can bring huge benefits in terms of reaction rates, plant energy expenditure, acid-base equilibria and greenhouse gas emissions. Despite these efforts, there is still no universally valid correlation between the design and operating parameters of a wastewater treatment plant and the gas-liquid mass transfer coefficients. That is why the current practice for oxygen mass transfer modelling is to apply overly simplified models, which come with multiple assumptions that are not valid for most applications. To deal with these complexities, correction factors were introduced over time. The most uncertain of them is the α-factor. To build fundamental gas-liquid mass transfer knowledge more advanced modelling paradigms have been applied more recently. Yet these come with a high level of complexity making them impractical for rapid process design and optimisation in an industrial setting. However, the knowledge gained from these more advanced models can help in improving the way the α-factor and thus gas-liquid mass transfer coefficient should be applied. That is why the presented work aims at clarifying the current state-of-the-art in gas-liquid mass transfer modelling of oxygen and other gases, but also to direct academic research efforts towards the needs of the industrial practitioners.


Subject(s)
Models, Theoretical , Wastewater , Gases , Oxygen , Uncertainty
5.
Water Res ; 156: 337-346, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30928528

ABSTRACT

Nitrifying biologically active filters (BAFs) have been found to be high emitters of nitrous oxide (N2O), a powerful greenhouse gas contributing to ozone layer depletion. While recent models have greatly improved our understanding of the triggers of N2O emissions from suspended-growth processes, less is known about N2O emissions from full-scale biofilm processes. Tertiary nitrifying BAFs have been modeled at some occasions but considering strong simplifications on the description of gas-liquid exchanges which are not appropriate for N2O prediction. In this work, a tertiary nitrifying BAF model including the main N2O biological pathways was developed and confronted to full-scale data from Seine Aval, the largest wastewater resource recovery facility in Europe. A mass balance on the gaseous compounds was included in order to correctly describe the N2O gas-liquid partition, thus N2O emissions. Preliminary modifications of the model structure were made to include the gas phase as a compartment of the model, which significantly affected the prediction of nitrification. In particular, considering gas hold-up influenced the prediction of the hydraulic retention time, thus nitrification performances: a 3.5% gas fraction reduced ammonium removal by 13%, as the liquid volume, small in such systems, is highly sensitive to the gas presence. Finally, the value of the volumetric oxygen transfer coefficient was adjusted to successfully predict both nitrification and N2O emissions.


Subject(s)
Bioreactors , Nitrification , Europe , Nitrous Oxide , Wastewater
6.
Water Sci Technol ; 75(3-4): 507-517, 2017 02.
Article in English | MEDLINE | ID: mdl-28192345

ABSTRACT

Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.


Subject(s)
Models, Theoretical , Oxygen/analysis , Wastewater , Water Purification/instrumentation , Water Purification/methods , Diffusion , Hydrodynamics , Viscosity , Wastewater/chemistry
7.
Water Res ; 102: 41-51, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27318446

ABSTRACT

A full-scale nitrifying biofilter was continuously monitored during two measurement periods (September 2014; February 2015) during which both gaseous and liquid N2O fluxes were monitored on-line. The results showed diurnal and seasonal variations of N2O emissions. A statistical model was run to determine the main operational parameters governing N2O emissions. Modification of the distribution between the gas phase and the liquid phase was observed related to the effects of temperature and aeration flow on the volumetric mass transfer coefficient (kLa). With similar nitrification performance values, the N2O emission factor was twice as high during the winter campaign. The increase in N2O emissions in winter was correlated to higher effluent nitrite concentrations and suspected increased biofilm thickness.


Subject(s)
Nitrification , Nitrous Oxide , Biofilms
8.
Sci Total Environ ; 563-564: 320-8, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27139304

ABSTRACT

In this study, nitrous oxide (N2O) emissions from a full-scale denitrifying biofilter plant were continuously monitored over two periods (summer campaign in September 2014 and winter campaign in February 2015). Results of the summer campaign showed that the major part (>99%) of N2O flux was found in the liquid phase and was discharged with the effluent. N2O emissions were highly variable and represented in average 1.28±1.99% and 0.22±0.31% of the nitrate uptake rate during summer and winter campaigns, respectively. Denitrification was able to consume a large amount of dissolved N2O coming from the upstream nitrification stage. In the absence of methanol injection failure and with an influent BOD/NO3-N ratio higher than 3, average reduction of N2O was estimated to be of 93%. The control of exogenous carbon dosage is essential to minimize N2O production from denitrifying biofilters, in correlation to NO2-N concentrations in the filter.


Subject(s)
Denitrification , Filtration , Nitrous Oxide/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Bioreactors , France
9.
Water Sci Technol ; 67(11): 2363-73, 2013.
Article in English | MEDLINE | ID: mdl-23752367

ABSTRACT

Increasingly stringent effluent limits and an expanding scope of model system boundaries beyond activated sludge has led to new modelling objectives and consequently to new and often more detailed modelling concepts. Nearly three decades after the publication of Activated Sludge Model No1 (ASM1), the authors believe it is time to re-evaluate wastewater characterisation procedures and targets. The present position paper gives a brief overview of state-of-the-art methods and discusses newly developed measurement techniques on a conceptual level. Potential future paths are presented including on-line instrumentation, promising measuring techniques, and mathematical solutions to fractionation problems. This is accompanied by a discussion on standardisation needs to increase modelling efficiency in our industry.


Subject(s)
Models, Theoretical , Wastewater/analysis , Biological Oxygen Demand Analysis , Biomass , Particle Size , Waste Disposal, Fluid/methods , Water Pollutants/analysis
10.
Water Environ Res ; 81(9): 858-65, 2009.
Article in English | MEDLINE | ID: mdl-19860142

ABSTRACT

The Activated Sludge Model number 1 (ASM1) is the main model used in simulation projects focusing on nitrogen removal. Recent laboratory-scale studies have found that the default values given 20 years ago for the decay rate of nitrifiers and for the heterotrophic biomass yield in anoxic conditions were inadequate. To verify the relevance of the revised parameter values at full scale, a series of simulations were carried out with ASM1 using the original and updated set of parameters at 20 degrees C and 10 degrees C. The simulation results were compared with data collected at 13 full-scale nitrifying-denitrifying municipal treatment plants. This work shows that simulations using the original ASM1 default parameters tend to overpredict the nitrification rate and underpredict the denitrification rate. The updated set of parameters allows more realistic predictions over a wide range of operating conditions.


Subject(s)
Nitrogen/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Bioreactors , Models, Chemical , Water Pollutants, Chemical , Water Purification/methods
11.
Water Environ Res ; 76(2): 183-8, 2004.
Article in English | MEDLINE | ID: mdl-15168851

ABSTRACT

The objective of this paper is to compare the following four methods of measuring oxygen transfer in wastewater treatment plants under process conditions: the offgas, hydrogen peroxide (H2O2), reaeration, and in situ oxygen uptake rate (OUR) methods. Comparative tests were performed under controlled conditions in a pilot column and in six full-scale oxidation ditches equipped with fine-bubble diffusers and slow-speed mixers. The offgas and H2O2 methods give similar results (differences between the oxygen-transfer coefficients under field conditions [k(L)a(f)] from each method lower than 10%). The reaeration procedure gives more random results (differences from -5 to -43% compared with values obtained using the offgas method). The in situ OUR method, in the presence of a horizontal flow of mixed liquor, leads to an estimate of k(L)a(f) to within 15% of the offgas value.


Subject(s)
Environmental Monitoring/methods , Oxygen/analysis , Waste Disposal, Fluid/methods , Hydrogen Peroxide/chemistry , Oxidants/chemistry , Oxidation-Reduction
12.
Water Res ; 37(15): 3742-8, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12867342

ABSTRACT

This note presents and compares two models to predict the equilibrium temperature in aerated basins. They differ by their degree of complexity and therefore by the input data they require. Both models were able to estimate the temperature of an industrial aerated lagoon, the more complex model giving, in addition, a complete breakdown of the heat exchanges.


Subject(s)
Bioreactors , Models, Theoretical , Waste Disposal, Fluid , Forecasting , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...