Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(22): eabn6006, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35658043

ABSTRACT

A sustainable closed-loop manufacturing would become reality if commodity plastics can be upcycled into higher-performance materials with facile processability. Such circularity will be realized when the upcycled plastics can be (re)processed into custom-designed structures through energy/resource-efficient additive manufacturing methods, especially by approachable and scalable fused filament fabrication (FFF). Here, we introduce a circular model epitomized by upcycling a prominent thermoplastic, acrylonitrile butadiene styrene (ABS) into a recyclable, robust adaptive dynamic covalent network (ABS-vitrimer) (re)printable via FFF. The full FFF processing of ABS-vitrimer overcomes the major challenge of (re)printing cross-linked materials and produces stronger, tougher, solvent-resistant three-dimensional objects directly reprintable and separable from unsorted plastic waste. This study thus offers an imminently adoptable approach for advanced manufacturing toward the circular plastics economy.

2.
Nat Commun ; 12(1): 5144, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34446713

ABSTRACT

Binder Jet Additive Manufacturing (BJAM) is a versatile AM technique that can form parts from a variety of powdered materials including metals, ceramics, and polymers. BJAM utilizes inkjet printing to selectively bind these powder particles together to form complex geometries. Adoption of BJAM has been limited due to its inability to form strong green parts using conventional binders. We report the discovery of a versatile polyethyleneimine (PEI) binder for silica sand that doubled the flexural strength of parts to 6.28 MPa compared with that of the conventional binder, making it stronger than unreinforced concrete (~4.5 MPa) in flexural loading. Furthermore, we demonstrate that PEI in the printed parts can be reacted with ethyl cyanoacrylate through a secondary infiltration, resulting in an increase in flexural strength to 52.7 MPa. The strong printed parts coupled with the ability for sacrificial washout presents potential to revolutionize AM in various applications including construction and tooling.

SELECTION OF CITATIONS
SEARCH DETAIL
...