Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37744285

ABSTRACT

Background: Breast cancer and its treatment are associated with aberrant patterns of resting state functional connectivity (rsFC) between the hippocampus and several areas of the brain, which may account for poorer cognitive outcomes in patients. Higher cardiorespiratory fitness (CRF) has been associated with enhanced rsFC and cognitive performance; however, these associations have not been well studied in breast cancer. We examined the relationship between CRF, rsFC of the hippocampus, and cognitive performance among women newly diagnosed with breast cancer. Methods: Thirty-four postmenopausal women newly diagnosed with Stage 0-IIIa breast cancer (Mage = 63.59 ± 5.73) were enrolled in a 6-month randomized controlled trial of aerobic exercise vs. usual care. During baseline assessments, participants completed functional brain imaging, a submaximal CRF test, and cognitive testing. Whole-brain, seed-based analyses were used to examine the relationship between CRF and hippocampal rsFC, with age, years of education, and framewise displacement included as covariates. Cognition was measured with a battery of validated neurocognitive measures, reduced to seven composite factors. Results: Higher CRF was positively associated with greater rsFC of the hippocampus to a cluster within the dorsomedial and dorsolateral frontal cortex (z-max = 4.37, p = 0.003, cluster extent = 1,020 voxels). Connectivity within cluster peaks was not significantly related to cognitive factors (all ps > 0.05). Discussion: CRF was positively associated with hippocampal rsFC to frontal cortex structures, comprising a network of regions commonly suppressed in breast cancer. Future longitudinal research is needed to explore whether baseline rsFC predicts long-term cognitive resilience in breast cancer.

2.
Front Hum Neurosci ; 16: 848028, 2022.
Article in English | MEDLINE | ID: mdl-35431843

ABSTRACT

Objective: Overweight and obesity [body mass index (BMI) ≥ 25 kg/m2] are associated with poorer prognosis among women with breast cancer, and weight gain is common during treatment. Symptoms of depression and anxiety are also highly prevalent in women with breast cancer and may be exacerbated by post-diagnosis weight gain. Altered brain function may underlie psychological distress. Thus, this secondary analysis examined the relationship between BMI, psychological health, and resting state functional connectivity (rsFC) among women with breast cancer. Methods: The sample included 34 post-menopausal women newly diagnosed with Stage 0-IIa breast cancer (Mage = 63.59 ± 5.73) who were enrolled in a 6-month randomized controlled trial of aerobic exercise vs. usual care. At baseline prior to randomization, whole-brain analyses were conducted to evaluate the relationship between BMI and seed-to-voxel rsFC of the hippocampus and amygdala. Connectivity values from significant clusters were then extracted and examined as predictors of self-reported depression and anxiety. Results: Mean BMI was in the obese range (M = 31.83 ± 6.62). For both seeds examined, higher BMI was associated with lower rsFC with regions of prefrontal cortex (PFC), including ventrolateral PFC (vlPFC), dorsolateral PFC, and superior frontal gyrus (z range = 2.85-4.26). Hippocampal connectivity with the vlPFC was negatively correlated with self-reported anxiety (ß = 0.47, p < 0.01). Conclusion: Higher BMI was associated with lower hippocampal and amygdala connectivity to regions of PFC implicated in cognitive control and emotion regulation. BMI-related differences in hippocampal and amygdala connectivity following a recent breast cancer diagnosis may relate to future worsening of psychological functioning during treatment and remission. Additional longitudinal research exploring this hypothesis is warranted.

3.
Brain Inform ; 8(1): 7, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33860392

ABSTRACT

Subject motion can introduce noise into neuroimaging data and result in biased estimations of brain structure. In-scanner motion can compromise data quality in a number of ways and varies widely across developmental and clinical populations. However, quantification of structural image quality is often limited to proxy or indirect measures gathered from functional scans; this may be missing true differences related to these potential artifacts. In this study, we take advantage of novel informatic tools, the CAT12 toolbox, to more directly measure image quality from T1-weighted images to understand if these measures of image quality: (1) relate to rigorous quality-control checks visually completed by human raters; (2) are associated with sociodemographic variables of interest; (3) influence regional estimates of cortical surface area, cortical thickness, and subcortical volumes from the commonly used Freesurfer tool suite. We leverage public-access data that includes a community-based sample of children and adolescents, spanning a large age-range (N = 388; ages 5-21). Interestingly, even after visually inspecting our data, we find image quality significantly impacts derived cortical surface area, cortical thickness, and subcortical volumes from multiple regions across the brain (~ 23.4% of all areas investigated). We believe these results are important for research groups completing structural MRI studies using Freesurfer or other morphometric tools. As such, future studies should consider using measures of image quality to minimize the influence of this potential confound in group comparisons or studies focused on individual differences.

SELECTION OF CITATIONS
SEARCH DETAIL
...