Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(19): 13622-13645, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37729113

ABSTRACT

A number of novel pyrazole derivatives have been synthesized, and several of these compounds are potent antibacterial agents with minimum inhibitory concentrations as low as 0.5 µg/mL. Human cell lines were tolerant to these lead compounds, and they showed negligible hemolytic effects at high concentrations. These bactericidal compounds are very effective against bacterial growth in both planktonic and biofilm contexts. Various techniques were applied to show the inhibition of biofilm growth and eradication of preformed biofilms by lead compounds. Potent compounds are more effective against persisters than positive controls. In vivo studies revealed that lead compounds are effective in rescuing C. elegans from bacterial infections. Several methods were applied to determine the mode of action including membrane permeability assay and SEM micrograph studies. Furthermore, CRISPRi studies led to the determination of these compounds as fatty acid biosynthesis (FAB) inhibitors.

2.
Antibiotics (Basel) ; 11(7)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35884194

ABSTRACT

From a library of compounds, 11 hit antibacterial agents have been identified as potent anti-Gram-positive bacterial agents. These pyrazole derivatives are active against two groups of pathogens, staphylococci and enterococci, with minimum inhibitory concentration (MIC) values as low as 0.78 µg/mL. These potent compounds showed bactericidal action, and some were effective at inhibiting and eradicating Staphylococcus aureus and Enterococcus faecalis biofilms. Real-time biofilm inhibition by the potent compounds was studied, by using Bioscreen C. These lead compounds were also very potent against S. aureus persisters as compared to controls, gentamycin and vancomycin. In multiple passage studies, bacteria developed little resistance to these compounds (no more than 2 × MIC). The plausible mode of action of the lead compounds is the permeabilization of the cell membrane determined by flow cytometry and protein leakage assays. With the detailed antimicrobial studies, both in planktonic and biofilm contexts, some of these potent compounds have the potential for further antimicrobial drug development.

3.
Molecules ; 26(16)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34443670

ABSTRACT

Enterococci and methicillin-resistant S. aureus (MRSA) are among the menacing bacterial pathogens. Novel antibiotics are urgently needed to tackle these antibiotic-resistant bacterial infections. This article reports the design, synthesis, and antimicrobial studies of 30 novel pyrazole derivatives. Most of the synthesized compounds are potent growth inhibitors of planktonic Gram-positive bacteria with minimum inhibitory concertation (MIC) values as low as 0.25 µg/mL. Further studies led to the discovery of several lead compounds, which are bactericidal and potent against MRSA persisters. Compounds 11, 28, and 29 are potent against S. aureus biofilms with minimum biofilm eradication concentration (MBEC) values as low as 1 µg/mL.


Subject(s)
Bacteria/growth & development , Drug Resistance, Bacterial/drug effects , Growth Inhibitors/chemical synthesis , Growth Inhibitors/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Bacteria/drug effects , Biofilms/drug effects , Cell Death/drug effects , Enterococcus faecalis/drug effects , Enterococcus faecalis/physiology , Growth Inhibitors/chemistry , HEK293 Cells , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Pyrazoles/chemistry
4.
Antibiotics (Basel) ; 9(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998384

ABSTRACT

Acinetobacter baumannii has emerged as one of the most lethal drug-resistant bacteria in recent years. We report the synthesis and antimicrobial studies of 25 new pyrazole-derived hydrazones. Some of these molecules are potent and specific inhibitors of A. baumannii strains with a minimum inhibitory concentration (MIC) value as low as 0.78 µg/mL. These compounds are non-toxic to mammalian cell lines in in vitro studies. Furthermore, one of the potent molecules has been studied for possible in vivo toxicity in the mouse model and found to be non-toxic based on the effect on 14 physiological blood markers of organ injury.

5.
Anal Bioanal Chem ; 410(10): 2637-2646, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29460220

ABSTRACT

Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.


Subject(s)
DNA, Bacterial/genetics , Oligonucleotide Array Sequence Analysis/methods , Polymerase Chain Reaction/methods , Salmonella Infections/microbiology , Salmonella/genetics , Serotyping/methods , Flow Cytometry/methods , Humans , Salmonella/classification , Salmonella typhi/classification , Salmonella typhi/genetics , Sensitivity and Specificity
6.
Lipids ; 49(11): 1143-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25227993

ABSTRACT

Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.


Subject(s)
Esters/analysis , Fatty Acids/analysis , Lipids/analysis , Wings, Animal/chemistry , Age Factors , Animals , Chiroptera/classification , Cholesterol Esters/analysis , Cholesterol Esters/chemistry , Esters/chemistry , Fatty Acids/chemistry , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/chemistry , Gas Chromatography-Mass Spectrometry/methods , Glycolipids/analysis , Glycolipids/chemistry , Lipids/chemistry , Sebum/chemistry , Sebum/cytology , Species Specificity , Squalene/analysis , Squalene/chemistry , Sterols/analysis , Sterols/chemistry
7.
Fungal Biol ; 118(9-10): 792-9, 2014.
Article in English | MEDLINE | ID: mdl-25209638

ABSTRACT

Pseudogymnoascus destructans is a psychrophilic fungus that infects cutaneous tissues in cave dwelling bats, and it is the causal agent for white nose syndrome (WNS) in North American (NA) bat populations. Geomyces pannorum is a related psychrotolerant keratinolytic species that is rarely a pathogen of mammals. In this study, we grew P. destructans and G. pannorum in static liquid cultures at favourable and suboptimal temperatures to: 1) determine if triacylglyceride profiles are species-specific, and 2) determine if there are differences in fatty acyl (FA) saturation levels with respect to temperature. Total lipids isolated from both fungal spp. were separated by thin-layer chromatography and determined to be primarily sterols (∼15 %), free fatty acids (FFAs) (∼45 %), and triacylglycerides (TAGs) (∼50 %), with minor amounts of mono-/diacylglycerides and sterol esters. TAG compositions were profiled by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF). Total fatty acid methyl esters (FAMEs) and acyl lipid unsaturation levels were determined by gas chromatography-mass spectrometry (GC-MS). Pseudogymnoascus destructans produced higher proportions of unsaturated 18C fatty acids and TAGs than G. pannorum. Pseudogymnoascus destructans and G. pannorum produced up to a two-fold increase in 18:3 fatty acids at 5 °C than at higher temperatures. TAG proportion for P. destructans at upper and lower temperature growth limits was greater than 50 % of total dried mycelia mass. These results indicate fungal spp. alter acyl lipid unsaturation as a strategy to adapt to cold temperatures. Differences between their glycerolipid profiles also provide evidence for a different metabolic strategy to support psychrophilic growth, which may influence P. destructans' pathogenicity to bats.


Subject(s)
Ascomycota/growth & development , Ascomycota/radiation effects , Cytosol/chemistry , Fatty Acids/analysis , Triglycerides/analysis , Animals , Ascomycota/isolation & purification , Ascomycota/metabolism , Chiroptera , Chromatography, Thin Layer , Gas Chromatography-Mass Spectrometry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Temperature
8.
J Chem Ecol ; 40(3): 227-35, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24532214

ABSTRACT

Pilosebaceous units found in the mammalian integument are composed of a hair follicle, the proximal portion of the hair shaft, a sebaceous gland, and the erector pili muscle. Pilosebaceous units release protective oils, or sebum, by holocrine secretion onto skin and hair through rupturing of sebocytes. Sebum is composed largely of polar and neutral lipids including glycerolipids, free fatty acids, sterols, wax esters, sterol esters, and squalene. In addition to these lipid classes, there is a small proportion of ionic/anionic glycerophospholipids (GPs). Composition of GPs on hair is rarely addressed despite their broad biological activities as signaling molecules and membrane stability. Furthermore, knowledge on GP composition in bats is lacking. Bat GP composition is important to document due to GP roles ranging from decreasing drag during migration to interaction with the integumentary microbiome. In this study, we analyzed GP molecular composition with liquid chromatography electrospray ionization tandem mass spectrometry and compared GP content to previous literature. A total of 152 GPs were detected. Broad GP classes identified include lysophosphatidylcholine, phosphatidylcholine (PC), lysophosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and phosphatidylglycerol, with PC being the most abundant class. The acyl components were consistent with fatty acid methyl esters and triacylglyceride moieties found in Eastern red bat sebum. Glycerophospholipid proportions of the hair surface were different from a previous study on bat lung surfactants. This study determined the broad class and molecular species of bat sebum GPs that may be used in future ecological studies in vespertilionid bats.


Subject(s)
Chiroptera/metabolism , Glycerophospholipids/analysis , Spectrometry, Mass, Electrospray Ionization , Animals , Glycerophospholipids/isolation & purification , Hair/metabolism , Liquid-Liquid Extraction
9.
Food Microbiol ; 38: 250-62, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24290649

ABSTRACT

Salmonella is the leading cause of foodborne illnesses in the United States, and one of the main contributors to salmonellosis is the consumption of contaminated poultry and poultry products. Since deleterious effects of Salmonella on public health and the economy continue to occur, there is an ongoing need to develop more advanced detection methods that can identify Salmonella accurately and rapidly in foods before they reach consumers. Rapid detection and identification methods for Salmonella are considered to be an important component of strategies designed to prevent poultry and poultry product-associated illnesses. In the past three decades, there have been increasing efforts towards developing and improving rapid pathogen detection and characterization methodologies for application to poultry and poultry products. In this review, we discuss molecular methods for detection, identification and genetic characterization of Salmonella associated with poultry and poultry products. In addition, the advantages and disadvantages of the established and emerging rapid detection and characterization methods are addressed for Salmonella in poultry and poultry products. The methods with potential application to the industry are highlighted in this review.


Subject(s)
Food Contamination/analysis , Genetic Techniques , Immunoassay/methods , Poultry Products/microbiology , Salmonella Food Poisoning/prevention & control , Salmonella/isolation & purification , Animals , Genetic Techniques/trends , Humans , Immunoassay/trends , Salmonella/genetics , Salmonella/immunology , Salmonella Food Poisoning/microbiology
10.
Chem Biodivers ; 10(12): 2122-32, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24327437

ABSTRACT

White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans and is devastating North American bat populations. Sebaceous lipids secreted from host integumentary tissues are implicated in the initial attachment and recognition of host tissues by pathogenic fungi. We are interested in determining if ratios of lipid classes in sebum can be used as biomarkers to diagnose severity of fungal infection in bats. To first establish lipid compositions in bats, we isolated secreted and integral lipid fractions from the hair and wing tissues of three species: big brown bats (Eptesicus fuscus), Eastern red bats (Lasiurus borealis), and evening bats (Nycticeius humeralis). Sterols, FFAs, MAGs, and squalene were derivatized as trimethylsilyl esters, separated by gas chromatography, and identified by mass spectrometry. Ratios of sterol to squalene in different tissues were determined, and cholesterol as a disease biomarker was assessed. Free sterol was the dominant lipid class of bat integument. Squalene/sterol ratio is highest in wing sebum. Secreted wing lipid contained higher proportions of saturated FFAs and MAGs than integral wing or secreted hair lipid. These compounds are targets for investigating responses of P. destructans to specific host lipid compounds and as biomarkers to diagnose WNS.


Subject(s)
Chiroptera/metabolism , Fatty Acids, Nonesterified/analysis , Gas Chromatography-Mass Spectrometry , Monoglycerides/analysis , Squalene/analysis , Sterols/analysis , Animals , Ascomycota/physiology , Biomarkers/analysis , Chiroptera/microbiology , Hair/chemistry , Hair/metabolism , Sebum/chemistry , Sebum/metabolism , Trimethylsilyl Compounds/chemistry , Wings, Animal/chemistry , Wings, Animal/metabolism
11.
Appl Biochem Biotechnol ; 135(2): 101-16, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17159235

ABSTRACT

The statistical design of experiments (DOE) is a collection of predetermined settings of the process variables of interest, which provides an efficient procedure for planning experiments. Experiments on biological processes typically produce long sequences of successive observations on each experimental unit (plant, animal, bioreactor, fermenter, or flask) in response to several treatments (combination of factors). Cell culture and other biotech-related experiments used to be performed by repeated-measures method of experimental design coupled with different levels of several process factors to investigate dynamic biological process. Data collected from this design can be analyzed by several kinds of general linear model (GLM) statistical methods such as multivariate analysis of variance (MANOVA), univariate ANOVA (time split-plot analysis with randomization restriction), and analysis of orthogonal polynomial contrasts of repeated factor (linear coefficient analysis). Last, regression model was introduced to describe responses over time to the different treatments along with model residual analysis. Statistical analysis of biprocess with repeated measurements can help investigate environmental factors and effects affecting physiological and bioprocesses in analyzing and optimizing biotechnology production.


Subject(s)
Biotechnology/methods , Analysis of Variance , Bioreactors , Fermentation , Lipids/biosynthesis , Models, Biological , Multivariate Analysis , Research Design
12.
Appl Biochem Biotechnol ; 133(2): 113-48, 2006 May.
Article in English | MEDLINE | ID: mdl-16702606

ABSTRACT

Polyhydroxyalkanoates (PHAs) are thermoplastic polyesters synthesized by Ralstonia eutropha and other bacteria as a form of intracellular carbon and energy storage and are accumulated as lipid inclusions in the cytoplasm of these bacteria. The modeling and optimization of PHA production by fermentation from industrial waste (ice cream residue) was studied by employing statistical experimental design methods. A series of iterative experimental designs was used to find optimal factor conditions (medium components and fermentation process time) in the order of fractional factorial design, path of steepest ascent, and full factorial augmented with axial design (rotational central composite design). An optimal range characterized by lipid (15 mg/mL) and % lipid (88%) values was found and further investigated to verify the optimal conditions for PHA production from ice cream (56.68 mL of ice cream or 56.68% ice cream in water [v/v], 5.03 mL of buffer, 1 mL of mineral salts solution, 100 muL of trace element solution, 100 mL of seed culture, and 213.76 h of fermentation time).


Subject(s)
Cupriavidus necator/metabolism , Ice Cream/microbiology , Ice Cream/statistics & numerical data , Models, Chemical , Polyesters/metabolism , Polyhydroxyalkanoates/biosynthesis , Polyhydroxyalkanoates/chemistry , Analysis of Variance , Biopolymers/biosynthesis , Biopolymers/chemistry , Lipids/biosynthesis , Lipids/chemical synthesis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...