Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 1118, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850613

ABSTRACT

It remains a significant challenge to define individual protein associations within networks where an individual protein can directly interact with other proteins and/or be part of large complexes, which contain functional modules. Here we demonstrate the topological scoring (TopS) algorithm for the analysis of quantitative proteomic datasets from affinity purifications. Data is analyzed in a parallel fashion where a prey protein is scored in an individual affinity purification by aggregating information from the entire dataset. Topological scores span a broad range of values indicating the enrichment of an individual protein in every bait protein purification. TopS is applied to interaction networks derived from human DNA repair proteins and yeast chromatin remodeling complexes. TopS highlights potential direct protein interactions and modules within complexes. TopS is a rapid method for the efficient and informative computational analysis of datasets, is complementary to existing analysis pipelines, and provides important insights into protein interaction networks.


Subject(s)
Algorithms , Protein Interaction Mapping/statistics & numerical data , Protein Interaction Maps , Chromatin Assembly and Disassembly , DNA Repair , Databases, Protein/statistics & numerical data , Humans , Likelihood Functions , Proteomics/statistics & numerical data , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
Proteomics ; 18(17): e1800203, 2018 09.
Article in English | MEDLINE | ID: mdl-30035358

ABSTRACT

Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.


Subject(s)
Adrenal Cortex Neoplasms/metabolism , Adrenocortical Carcinoma/metabolism , Cell Proliferation , Fibroblast Growth Factor 2/pharmacology , Proteome/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Transcription Factors/metabolism , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/pathology , Animals , Humans , Mice , Protein Interaction Maps , Proteome/analysis , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Tumor Cells, Cultured , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
3.
Proteomics, v. 18, n. 17, 18002013, jul. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2657

ABSTRACT

Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.

4.
Proteomics ; 18(17): 1800203, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15799

ABSTRACT

Fibroblast growth factor 2 (FGF2) is a well-known cell proliferation promoter; however, it can also induce cell cycle arrest. To gain insight into the molecular mechanisms of this antiproliferative effect, for the first time, the early systemic proteomic differences induced by this growth factor in a K-Ras-driven mouse tumor cell line using a quantitative proteomics approach are investigated. More than 2900 proteins are quantified, indicating that terms associated with metabolism, RNA processing, replication, and transcription are enriched among proteins differentially expressed upon FGF2 stimulation. Proteomic trend dynamics indicate that, for proteins mainly associated with DNA replication and carbohydrate metabolism, an FGF2 stimulus delays their abundance changes, whereas FGF2 stimulation accelerates other metabolic programs. Transcription regulatory network analysis indicates master regulators of FGF2 stimulation, including two critical transcription factors, FOSB and JUNB. Their expression dynamics, both in the Y1 cell line (a murine model of adenocarcinoma cells) and in two other human cell lines (SK-N-MC and UM-UC-3) also susceptible to FGF2 antiproliferative effects, are investigated. Both protein expression levels depend on fibroblast growth factor receptor (FGFR) and src signaling. JUNB and FOSB knockdown do not rescue cells from the growth arrest induced by FGF2; however, FOSB knockdown rescue cells from DNA replication delay, indicating that FOSB expression underlies one of the FGF2 antiproliferative effects, namely, S-phase progression delay.

5.
Proc Natl Acad Sci U S A ; 114(20): E3944-E3953, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28465432

ABSTRACT

The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of Y1S2P3T4S5P6S7 heptapeptide repeats of the CTD engage specific "readers." Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes. Here, we identify a role for phospho-Thr4 in transcription termination at noncoding small nucleolar RNA (snoRNA) genes. Quantitative proteomics reveals an interactome of known readers as well as protein complexes that were not known to rely on Thr4 for association with Pol II. The data indicate a key role for Thr4 in engaging the machinery used for transcription elongation and termination. We focus on Rtt103, a protein that binds phospho-Ser2 and phospho-Thr4 marks and facilitates transcription termination at protein-coding genes. To elucidate how Rtt103 engages two distinct CTD modifications that are differentially enriched at noncoding genes, we relied on NMR analysis of Rtt103 in complex with phospho-Thr4- or phospho-Ser2-bearing CTD peptides. The structural data reveal that Rtt103 interacts with phospho-Thr4 in a manner analogous to its interaction with phospho-Ser2-modified CTD. The same set of hydrogen bonds involving either the oxygen on phospho-Thr4 and the hydroxyl on Ser2, or the phosphate on Ser2 and the Thr4 hydroxyl, can be formed by rotation of an arginine side chain, leaving the intermolecular interface otherwise unperturbed. This economy of design enables Rtt103 to engage Pol II at distinct sets of genes with differentially enriched CTD marks.


Subject(s)
RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Peptide Termination Factors/metabolism , Phosphorylation , Protein Domains/physiology , Protein Isoforms/metabolism , RNA Polymerase II/physiology , RNA, Small Nucleolar/metabolism , RNA, Small Untranslated/metabolism , RNA, Untranslated/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology , Serine/metabolism , Threonine/metabolism , Transcription Factors/physiology , Transcription, Genetic/genetics
6.
Sci Rep ; 7: 43845, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272416

ABSTRACT

Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks.


Subject(s)
Algorithms , Computational Biology/methods , Models, Biological , Protein Interaction Maps , Databases, Protein , Humans , Protein Binding , Saccharomyces cerevisiae Proteins/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/metabolism
7.
Nat Commun ; 8: 14527, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28218250

ABSTRACT

Previous studies have revealed that nucleosomes impede elongation of RNA polymerase II (RNAPII). Recent observations suggest a role for ATP-dependent chromatin remodellers in modulating this process, but direct in vivo evidence for this is unknown. Here using fission yeast, we identify Fun30Fft3 as a chromatin remodeller, which localizes at transcribing regions to promote RNAPII transcription. Fun30Fft3 associates with RNAPII and collaborates with the histone chaperone, FACT, which facilitates RNAPII elongation through chromatin, to induce nucleosome disassembly at transcribing regions during RNAPII transcription. Mutants, resulting in reduced nucleosome-barrier, such as deletion mutants of histones H3/H4 themselves and the genes encoding components of histone deacetylase Clr6 complex II suppress the defects in growth and RNAPII occupancy of cells lacking Fun30Fft3. These data suggest that RNAPII utilizes the chromatin remodeller, Fun30Fft3, to overcome the nucleosome barrier to transcription elongation.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Nucleosomes/metabolism , RNA Polymerase II/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Fungal , Histones/genetics , Histones/metabolism , Models, Genetic , Nucleosomes/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Transcription, Genetic
8.
Cell ; 168(1-2): 59-72.e13, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28065413

ABSTRACT

Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.


Subject(s)
Leukemia, Biphenotypic, Acute/drug therapy , Leukemia, Biphenotypic, Acute/metabolism , Proteolysis/drug effects , Animals , Disease Models, Animal , Histone-Lysine N-Methyltransferase/metabolism , Humans , Interleukin-1/metabolism , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Mice, Inbred C57BL , Myeloid-Lymphoid Leukemia Protein/metabolism , Ubiquitin-Conjugating Enzymes
9.
Mol Cell ; 64(2): 282-293, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27720645

ABSTRACT

RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins.


Subject(s)
Algorithms , Molecular Sequence Annotation , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/classification , RNA/chemistry , Animals , Binding Sites , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Cytoplasm/chemistry , Cytoplasm/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression , Gene Ontology , HEK293 Cells , Humans , Nucleotide Motifs , Protein Binding , Protein Interaction Domains and Motifs , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Software , Zinc Fingers
10.
PLoS One ; 11(6): e0155492, 2016.
Article in English | MEDLINE | ID: mdl-27248496

ABSTRACT

Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes. Through a quantitative proteomic analysis of affinity purifications here we show that the human homologue of this protein, WDR76, shares multiple protein associations with the histones H2A, H2B, and H4. Furthermore, our quantitative proteomic analysis of WDR76 associated proteins demonstrated links to proteins in the DNA damage response like PARP1 and XRCC5 and heterochromatin related proteins like CBX1, CBX3, and CBX5. Co-immunoprecipitation studies validated these interactions. Next, quantitative imaging studies demonstrated that WDR76 was recruited to laser induced DNA damage immediately after induction, and we compared the recruitment of WDR76 to laser induced DNA damage to known DNA damage proteins like PARP1, XRCC5, and RPA1. In addition, WDR76 co-localizes to puncta with the heterochromatin proteins CBX1 and CBX5, which are also recruited to DNA damage but much less intensely than WDR76. This work demonstrates the chromatin and DNA damage protein associations of WDR76 and demonstrates the rapid response of WDR76 to laser induced DNA damage.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA Damage , Heterochromatin/metabolism , Cell Cycle Proteins , Chromobox Protein Homolog 5 , DNA-Binding Proteins , HEK293 Cells , Humans
11.
J Biol Chem ; 290(24): 15030-41, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25878247

ABSTRACT

Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process. In unstressed cells, Elongin A is predominately present as part of Pol II elongation factor Elongin. Assembly of Elongin A into the ubiquitin ligase is strongly induced by genotoxic stress; by transcriptional stresses that lead to accumulation of stalled Pol II; and by other stimuli, including endoplasmic reticulum and nutrient stress and retinoic acid signaling, that activate Elongin A-dependent transcription. Taken together, our findings shed new light on mechanisms that control the Elongin A ubiquitin ligase and suggest that it may play a role in Elongin A-dependent transcription.


Subject(s)
Mutagens/pharmacology , Oxidative Stress , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Elongin , Fluorescence Resonance Energy Transfer , Fluorescent Antibody Technique, Indirect , HEK293 Cells , Humans , RNA, Messenger/genetics , Tretinoin/pharmacology , Ultraviolet Rays
12.
Mol Cell Biol ; 35(6): 928-38, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25561469

ABSTRACT

Cyclin-dependent kinase 9 (CDK9) and CDK12 have each been demonstrated to phosphorylate the RNA polymerase II C-terminal domain (CTD) at serine 2 of the heptad repeat, both in vitro and in vivo. CDK9, as part of P-TEFb and the super elongation complex (SEC), is by far the best characterized of CDK9, CDK12, and CDK13. We employed both in vitro and in vivo assays to further investigate the molecular properties of CDK12 and its paralog CDK13. We isolated Flag-tagged CDK12 and CDK13 and found that they associate with numerous RNA processing factors. Although knockdown of CDK12, CDK13, or their cyclin partner CCNK did not affect the bulk CTD phosphorylation levels in HCT116 cells, transcriptome sequencing (RNA-seq) analysis revealed that CDK12 and CDK13 losses in HCT116 cells preferentially affect expression of DNA damage response and snoRNA genes, respectively. CDK12 and CDK13 depletion also leads to a loss of expression of RNA processing factors and to defects in RNA processing. These findings suggest that in addition to implementing CTD phosphorylation, CDK12 and CDK13 may affect RNA processing through direct physical interactions with RNA processing factors and by regulating their expression.


Subject(s)
CDC2 Protein Kinase/genetics , Cyclin-Dependent Kinases/genetics , Phosphorylation/genetics , RNA Processing, Post-Transcriptional/genetics , RNA/genetics , Transcription, Genetic/genetics , Cell Line , Cell Line, Tumor , DNA Damage/genetics , HCT116 Cells , HEK293 Cells , Humans
13.
EMBO Rep ; 16(1): 116-26, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25427557

ABSTRACT

The study of conserved protein interaction networks seeks to better understand the evolution and regulation of protein interactions. Here, we present a quantitative proteomic analysis of 18 orthologous baits from three distinct chromatin-remodeling complexes in Saccharomyces cerevisiae and Homo sapiens. We demonstrate that abundance levels of orthologous proteins correlate strongly between the two organisms and both networks have highly similar topologies. We therefore used the protein abundances in one species to cross-predict missing protein abundance levels in the other species. Lastly, we identified a novel conserved low-abundance subnetwork further demonstrating the value of quantitative analysis of networks.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Protein Interaction Maps , Saccharomyces cerevisiae Proteins/metabolism , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/metabolism , DNA Helicases/metabolism , DNA-Binding Proteins , Histone Acetyltransferases/metabolism , Humans , Lysine Acetyltransferase 5 , Protein Interaction Mapping/methods , Proteomics/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
14.
Mol Cell Proteomics ; 13(11): 3114-25, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25073741

ABSTRACT

Histone deacetylases (HDACs) are targets for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor approved by the U.S. Food and Drug Administration for the treatment of cutaneous T-cell lymphoma. To obtain a better mechanistic understanding of the Sin3/HDAC complex in cancer, we extended its protein-protein interaction network and identified a mutually exclusive pair within the complex. We then assessed the effects of SAHA on the disruption of the complex network through six homologous baits. SAHA perturbs multiple protein interactions and therefore compromises the composition of large parts of the Sin3/HDAC network. A comparison of the effect of SAHA treatment on gene expression in breast cancer cells to a knockdown of the ING2 subunit indicated that a portion of the anticancer effects of SAHA may be attributed to the disruption of ING2's association with the complex. Our dynamic protein interaction network resource provides novel insights into the molecular mechanism of SAHA action and demonstrates the potential for drugs to rewire networks.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Homeodomain Proteins/genetics , Hydroxamic Acids/pharmacology , Protein Interaction Maps , Receptors, Cytoplasmic and Nuclear/genetics , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Tumor Suppressor Proteins/genetics , Cell Line, Tumor , Female , Gene Expression/drug effects , Gene Expression Regulation/drug effects , Humans , Protein Binding , Triple Negative Breast Neoplasms/drug therapy , Vorinostat
15.
PLoS One ; 8(5): e62857, 2013.
Article in English | MEDLINE | ID: mdl-23667531

ABSTRACT

Medulloblastomas and glioblastomas, the most common primary brain tumors in children and adults, respectively, are extremely difficult to treat. Efforts to identify novel proteins essential for the growth of these tumors may help to further our understanding of the biology of these tumors, as well as, identify targets for future therapies. The recent identification of multiple transcription factor-centric protein interaction landscapes in embryonic stem cells has identified numerous understudied proteins that are essential for the self-renewal of these stem cells. To identify novel proteins essential for the fate of brain tumor cells, we examined the protein interaction network of the transcription factor, SOX2, in medulloblastoma cells. For this purpose, Multidimensional Protein Identification Technology (MudPIT) identified >280 SOX2-associated proteins in the medulloblastoma cell line DAOY. To begin to understand the roles of SOX2-associated proteins in brain cancer, we focused on two SOX2-associated proteins, Musashi 2 (MSI2) and Ubiquitin Specific Protease 9x (USP9X). Recent studies have implicated MSI2, a putative RNA binding protein, and USP9X, a deubiquitinating enzyme, in several cancers, but not brain tumors. We demonstrate that knockdown of MSI2 significantly reduces the growth of DAOY cells as well as U87 and U118 glioblastoma cells. We also demonstrate that the knockdown of USP9X in DAOY, U87 and U118 brain tumor cells strongly reduces their growth. Together, our studies identify a large set of SOX2-associated proteins in DAOY medulloblastoma cells and identify two proteins, MSI2 and USP9X, that warrant further investigation to determine whether they are potential therapeutic targets for brain cancer.


Subject(s)
Brain Neoplasms/pathology , RNA-Binding Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Cell Engineering , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Knockdown Techniques , Mice , Protein Binding , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/genetics
16.
J Biol Chem ; 287(14): 11384-97, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22334693

ABSTRACT

Unbiased proteomic screens provide a powerful tool for defining protein-protein interaction networks. Previous studies employed multidimensional protein identification technology to identify the Sox2-interactome in embryonic stem cells (ESC) undergoing differentiation in response to a small increase in the expression of epitope-tagged Sox2. Thus far the Sox2-interactome in ESC has not been determined. To identify the Sox2-interactome in ESC, we engineered ESC for inducible expression of different combinations of epitope-tagged Sox2 along with Oct4, Klf4, and c-Myc. Epitope-tagged Sox2 was used to circumvent the lack of suitable Sox2 antibodies needed to perform an unbiased proteomic screen of Sox2-associated proteins. Although i-OS-ESC differentiate when both Oct4 and Sox2 are elevated, i-OSKM-ESC do not differentiate even when the levels of the four transcription factors are coordinately elevated ∼2-3-fold. Our findings with i-OS-ESC and i-OSKM-ESC provide new insights into the reasons why ESC undergo differentiation when Sox2 and Oct4 are elevated in ESC. Importantly, the use of i-OSKM-ESC enabled us to identify the Sox2-interactome in undifferentiated ESC. Using multidimensional protein identification technology, we identified >70 proteins that associate with Sox2 in ESC. We extended these findings by testing the function of the Sox2-assoicated protein Smarcd1 and demonstrate that knockdown of Smarcd1 disrupts the self-renewal of ESC and induces their differentiation. Together, our work provides the first description of the Sox2-interactome in ESC and indicates that Sox2 along with other master regulators is part of a highly integrated protein-protein interaction landscape in ESC.


Subject(s)
Cell Engineering , Embryonic Stem Cells/metabolism , Protein Interaction Mapping , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Animals , Cell Differentiation , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Embryonic Stem Cells/cytology , Epitope Mapping , Gene Expression , Gene Knockdown Techniques , Humans , Kinesins/genetics , Kinesins/metabolism , Kruppel-Like Factor 4 , Mice , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Proteomics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
17.
Mol Cell Proteomics ; 11(4): M111.011544, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22199229

ABSTRACT

A significant challenge in biology is to functionally annotate novel and uncharacterized proteins. Several approaches are available for deducing the function of proteins in silico based upon sequence homology and physical or genetic interaction, yet this approach is limited to proteins with well-characterized domains, paralogs and/or orthologs in other species, as well as on the availability of suitable large-scale data sets. Here, we present a quantitative proteomics approach extending the protein network of core histones H2A, H2B, H3, and H4 in Saccharomyces cerevisiae, among which a novel associated protein, the previously uncharacterized Ydl156w, was identified. In order to predict the role of Ydl156w, we designed and applied integrative bioinformatics, quantitative proteomics and biochemistry approaches aiming to infer its function. Reciprocal analysis of Ydl156w protein interactions demonstrated a strong association with all four histones and also to proteins strongly associated with histones including Rim1, Rfa2 and 3, Yku70, and Yku80. Through a subsequent combination of the focused quantitative proteomics experiments with available large-scale genetic interaction data and Gene Ontology functional associations, we provided sufficient evidence to associate Ydl156w with multiple processes including chromatin remodeling, transcription and DNA repair/replication. To gain deeper insights into the role of Ydl156w in histone biology we investigated the effect of the genetic deletion of ydl156w on H4 associated proteins, which lead to a dramatic decrease in the association of H4 with RNA polymerase III proteins. The implication of a role for Ydl156w in RNA Polymerase III mediated transcription was consequently verified by RNA-Seq experiments. Finally, using these approaches we generated a refined network of Ydl156w-associated proteins.


Subject(s)
DNA-Binding Proteins/metabolism , Histones/metabolism , Proteomics/methods , RNA Polymerase III/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA-Binding Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Transcription, Genetic
18.
Mol Syst Biol ; 7: 503, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21734642

ABSTRACT

Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt-Ada-Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants.


Subject(s)
Chromatin Assembly and Disassembly , Computational Biology/methods , Proteomics/methods , Saccharomyces cerevisiae Proteins/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Databases, Genetic , Gene Deletion , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Models, Genetic , Phenotype , Plasmids , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism
19.
Stem Cells ; 28(10): 1715-27, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20687156

ABSTRACT

Small increases in the levels of master regulators, such as Sox2, in embryonic stem cells (ESC) have been shown to promote their differentiation. However, the mechanism by which Sox2 controls the fate of ESC is poorly understood. In this study, we employed multidimensional protein identification technology and identified >60 nuclear proteins that associate with Sox2 early during ESC differentiation. Gene ontology analysis of Sox2-associated proteins indicates that they participate in a wide range of processes. Equally important, a significant number of the Sox2-associated proteins identified in this study have been shown previously to interact with Oct4, Nanog, Sall4, and Essrb. Moreover, we examined the impact of manipulating the expression of a Sox2-associated protein on the fate of ESC. Using ESC engineered for inducible expression of Sox21, we show that ectopic expression of Sox21 in ESC induces their differentiation into specific cell types, including those that express markers representative of neurectoderm and heart development. Collectively, these studies provide new insights into the range of molecular processes through which Sox2 is likely to influence the fate of ESC and provide further support for the conclusion that the expression of Sox proteins in ESC must be precisely regulated. Importantly, our studies also argue that Sox2, along with other pluripotency-associated transcription factors, is woven into highly interconnected regulatory networks that function at several levels to control the fate of ESC.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , SOXB2 Transcription Factors/metabolism , Animals , Blotting, Western , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Immunoprecipitation , Mesoderm/cytology , Mesoderm/metabolism , Mice , Neural Plate/cytology , Neural Plate/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , SOXB1 Transcription Factors/genetics , SOXB2 Transcription Factors/genetics
20.
J Proteomics ; 73(11): 2078-91, 2010 Oct 10.
Article in English | MEDLINE | ID: mdl-20797458

ABSTRACT

The emergence of shotgun proteomics has facilitated the numerous biological discoveries made by proteomic studies. However, comprehensive proteomic analysis remains challenging and shotgun proteomics is a continually changing field. This review details the recent developments in shotgun proteomics and describes emerging technologies that will influence shotgun proteomics going forward. In addition, proteomic studies of integral membrane proteins remain challenging due to the hydrophobic nature in integral membrane proteins and their general low abundance levels. However, there have been many strategies developed for enriching, isolating and separating membrane proteins for proteomic analysis that have moved this field forward. In summary, while shotgun proteomics is a widely used and mature technology, the continued pace of improvements in mass spectrometry and proteomic technology and methods indicate that future studies will have an even greater impact on biological discovery.


Subject(s)
Proteome/analysis , Proteomics/methods , Chromatography/methods , Chromatography/trends , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry/methods , Mass Spectrometry/trends , Membrane Proteins/chemistry , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism , Proteome/chemistry , Proteome/metabolism , Proteomics/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...