Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 373(6555): 673-678, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34353950

ABSTRACT

Fully controllable ultracold atomic systems are creating opportunities for quantum sensing, yet demonstrating a quantum advantage in useful applications by harnessing entanglement remains a challenging task. Here, we realize a many-body quantum-enhanced sensor to detect displacements and electric fields using a crystal of ~150 trapped ions. The center-of-mass vibrational mode of the crystal serves as a high-Q mechanical oscillator, and the collective electronic spin serves as the measurement device. By entangling the oscillator and collective spin and controlling the coherent dynamics via a many-body echo, a displacement is mapped into a spin rotation while avoiding quantum back-action and thermal noise. We achieve a sensitivity to displacements of 8.8 ± 0.4 decibels below the standard quantum limit and a sensitivity for measuring electric fields of 240 ± 10 nanovolts per meter in 1 second. Feasible improvements should enable the use of trapped ions in searches for dark matter.

2.
Phys Rev Lett ; 122(5): 053603, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30821989

ABSTRACT

We experimentally study electromagnetically induced transparency cooling of the drumhead modes of planar two-dimensional arrays with up to N≈190 Be^{+} ions stored in a Penning trap. Substantial sub-Doppler cooling is observed for all N drumhead modes. Quantitative measurements for the center-of-mass mode show near ground-state cooling with motional quantum numbers of n[over ¯]=0.3±0.2 obtained within 200 µs. The measured cooling rate is faster than that predicted by single particle theory, consistent with a quantum many-body calculation. For the lower frequency drumhead modes, quantitative temperature measurements are limited by frequency instabilities, but near ground-state cooling of the full bandwidth is strongly suggested. This advance will greatly improve the performance of large trapped ion crystals in quantum information and metrology applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...