Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35886168

ABSTRACT

Tinnitus treatment, diagnosis and management across Europe varies significantly. The lack of national clinical guidelines for tinnitus management in most European countries and the absence of a common language across all disciplines involved is reflected in the diversification of healthcare practices. Interprofessional Training for Tinnitus Researchers and Clinicians (Tin-TRAC) is an Erasmus+ project that aims to develop common educational ground in the form of an e-Learning platform, co-created by patients, researchers and clinicians, which is able to unify tinnitus diagnosis and treatment strategies across Europe. A pan-European thematic educational platform integrating the best practices and latest research achievements with regard to tinnitus diagnosis and management has the potential to act as a facilitator of the reduction of interdisciplinary and interregional practice diversification. A detailed analysis of the educational needs of clinicians and researchers across disciplines will be followed by the co-creative development of the curriculum. Reusable learning objects will incorporate the training contents and will be integrated in an open e-Learning platform. Tin-TRAC envisions that its output will answer the need to create a common language across the clinicians and researchers of different disciplines that are involved in tinnitus management, and reduce patients' prolonged suffering, non-adherence and endless referral trajectories.


Subject(s)
Computer-Assisted Instruction , Tinnitus , Humans , Curriculum , Learning , Tinnitus/therapy
2.
J Occup Environ Med ; 64(9): e567-e574, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35902374

ABSTRACT

OBJECTIVE: The aim of this study was to assess the mental health and sleep quality of aviation workers in Greece during the pandemic. METHODS: A cross-sectional study of aviation workers in Greece was conducted. RESULTS: Sleep disturbances were observed in 25.4% of our 548 participants, whereas 8.2% and 5.8% reported at least mild depressive and anxiety symptoms, respectively. The impact of the pandemic on their mental health was their primary concern, which increased for many active pilots according to their workload. Those infected mainly faced daily tiredness and fatigue. Smoking habits and high body mass index were a predisposition for more physical symptoms. Cabin crew and women generally yielded worse scores than the other groups. CONCLUSION: Fear of infection could explain mental health issues, whereas physical symptoms of those infected could be attributed to long-COVID (coronavirus disease) syndrome. Flight attendants' lower ratings may be due to more occupational exposure.


Subject(s)
Aviation , COVID-19 , COVID-19/complications , COVID-19/epidemiology , Cross-Sectional Studies , Fatigue/epidemiology , Fatigue/etiology , Female , Greece/epidemiology , Humans , Mental Health , Pandemics , Sleep Quality , Post-Acute COVID-19 Syndrome
3.
Front Hum Neurosci ; 15: 721065, 2021.
Article in English | MEDLINE | ID: mdl-34566606

ABSTRACT

The COVID-19 pandemic has spread rapidly worldwide with critical consequences in health, as well as in social, economic, and particularly in psychological conditions of vulnerable people, especially older adults. Therefore, it is necessary the direct attention to their health care needs and related interventions. Information and Communication Technology (ICT) have direct impact on older adults' health and quality of life leading to decreased depression and loneliness, along with empowerment of independent life. Many studies involve cognitive training programs/software based on new technological systems that provide to vulnerable people access to gamified, attractive, cognitive exercises for overall functionality everywhere and at any time. Twenty-four participants (mean age 69.3 years) were assigned to this study. The cognitive training component of LLM Care was used as an interactive software to enhance participants' cognitive functions. The intervention lasted 12 weeks with the frequency of 2-4 times per week in sessions of at least 30 min. Participants used their personal devices (tablets/laptops) in their own residence, while technical and consulting guidance was provided by LLM Care certified trainers. They were informed about the purpose of the study, while consent forms along with psychological assessments were distributed every 2 weeks to periodically evaluate their psychosocial and mental health conditions. The assessments included the World Health Organization-Five Well-Being Index (WHO-5), the Short Anxiety Screening Test (SAST), the System Usability Scale (SUS) and the Impact Factor Event Scale (IES-R). According to the results, the participants with improved well-being tended to report decreased subjective distress caused by COVID-19, and their engagement with new technologies can potentially minimize the negative outcomes occurred by the current stressful situation, mitigating the effect of hyperarousal symptoms, while increasing their overall well-being. Well-being seems to remain relatively stable among older adults and decreases only when adversities occur, while the usability of the software was perceived as marginally acceptable by participants. The exploitation of the LLM Care contributes to the improvement of older adults' well-being and alleviates the negative experience caused by stressful situations like COVID-19.

4.
Front Physiol ; 12: 644661, 2021.
Article in English | MEDLINE | ID: mdl-34045973

ABSTRACT

PURPOSE: Increasing the level of gravity passively on a centrifuge, should be equal to or even more beneficial not only to astronauts living in a microgravity environment but also to patients confined to bed. Gravity therapy (GT) may have beneficial effects on numerous conditions, such as immobility due to neuromuscular disorders, balance disorders, stroke, sports injuries. However, the appropriate configuration for administering the Gz load remains to be determined. METHODS: To address these issues, we studied graded G-loads from 0.5 to 2.0g in 24 young healthy, male and female participants, trained on a short arm human centrifuge (SAHC) combined with mild activity exercise within 40-59% MHR, provided by an onboard bicycle ergometer. Hemodynamic parameters, as cardiac output (CO), stroke volume (SV), mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were analyzed, as well as blood gas analysis. A one-way repeated measures ANOVA and pairwise comparisons were conducted with a level of significance p < 0.05. RESULTS: Significant changes in heart rate variability (HRV) and its spectral components (Class, Fmax, and VHF) were found in all g loads when compared to standing (p < 0.001), except in 1.7 and 2.0g. There were significant changes in CO, cardiac index (CI), and cardiac power (CP) (p < 0.001), and in MAP (p = 0.003) at different artificial gravity (AG) levels. Dose-response curves were determined based on statistically significant changes in cardiovascular parameters, as well as in identifying the optimal G level for training, as well as the optimal G level for training. There were statistically significant gender differences in Cardiac Output/CO (p = 0.002) and Cardiac Power/CP (p = 0.016) during the AG training as compared to standing. More specifically, these cardiovascular parameters were significantly higher for male than female participants. Also, there was a statistically significant (p = 0.022) gender by experimental condition interaction, since the high-frequency parameter of the heart rate variability was attenuated during AG training as compared to standing but only for the female participants (p = 0.004). CONCLUSION: The comprehensive cardiovascular evaluation of the response to a range of graded AG loads, as compared to standing, in male and female subjects provides the dose-response framework that enables us to explore and validate the usefulness of the centrifuge as a medical device. It further allows its use in precisely selecting personalized gravity therapy (GT) as needed for treatment or rehabilitation of individuals confined to bed.

5.
J Sleep Res ; 30(5): e13323, 2021 10.
Article in English | MEDLINE | ID: mdl-33829595

ABSTRACT

We investigated the alterations of sleep regulation and promotion biomarkers as adenosine through its enzymes total adenosine deaminase (tADA)/adenosine deaminase (ADA2) in a microgravity analogue environment of head-down-tilt bed rest and their association with brain connectivity networks during non-rapid eye movement sleep stage 3 (NREM3), as well as the effectiveness of the reactive sledge (RSL) jump countermeasure to promote sleep. A total of 23 healthy male volunteers were maintained in 6° head-down-tilt position for 30 days and assigned either to a control or to a RSL group. Blood collection and polysomnographic recordings were performed on data acquisition day 1, 14, 30 and -14, 21, respectively. Immunochemical techniques and network-based statistics were employed for adenosine enzymes and cortical connectivity estimation. Our findings indicate that human blood adenosine biomarkers as well as NREM3 cortical functional connectivity are impaired in simulated microgravity. RSL physical activity intervened in sleep quality via tADA/ADA2 fluctuations lack, minor cortical connectivity increases, and limited degree of node and resting-state networks. Statistically significant decreases in adenosine biomarkers and NREM3 functional connectivity involving regions (left superior temporal gyrus, right postcentral gyrus, precuneus, left middle frontal gyrus, left postcentral gyrus, left angular gyrus and precuneus) of the auditory, sensorimotor default-mode and executive networks highlight the sleep disturbances due to simulated microgravity and the sleep-promoting role of RSL countermeasure. The head-down-tilt environment led to sleep deterioration projected through NREM3 cortical brain connectivity or/and adenosine biomarkers shift. This decline was more pronounced in the absence of the RSL countermeasure, thereby highlighting its likely exploitation during space missions.


Subject(s)
Adenosine , Bed Rest , Biomarkers , Head-Down Tilt , Humans , Magnetic Resonance Imaging , Male , Rest , Sleep Stages
6.
Front Neurol ; 12: 746832, 2021.
Article in English | MEDLINE | ID: mdl-35058870

ABSTRACT

Short-arm human centrifugation (SAHC) is proposed as a robust countermeasure to treat deconditioning and prevent progressive disability in a case of secondary progressive multiple sclerosis. Based on long-term physiological knowledge derived from space medicine and missions, artificial gravity training seems to be a promising physical rehabilitation approach toward the prevention of musculoskeletal decrement due to confinement and inactivity. So, the present study proposes a novel infrastructure based on SAHC to investigate the hypothesis that artificial gravity ameliorates the degree of disability. The patient was submitted to a 4-week training programme including three weekly sessions of 30 min of intermittent centrifugation at 1.5-2 g. During sessions, cardiovascular, muscle oxygen saturation (SmO2) and electroencephalographic (EEG) responses were monitored, whereas neurological and physical performance tests were carried out before and after the intervention. Cardiovascular parameters improved in a way reminiscent of adaptations to aerobic exercise. SmO2 decreased during sessions concomitant with increased g load, and, as training progressed, SmO2 of the suffering limb dropped, both effects suggesting increased oxygen use, similar to that seen during hard exercise. EEG showed increased slow and decreased fast brain waves, with brain reorganization/plasticity evidenced through functional connectivity alterations. Multiple-sclerosis-related disability and balance capacity also improved. Overall, this study provides novel evidence supporting SAHC as a promising therapeutic strategy in multiple sclerosis, based on mechanical loading, thereby setting the basis for future randomized controlled trials.

7.
J Alzheimers Dis ; 71(4): 1201-1215, 2019.
Article in English | MEDLINE | ID: mdl-31524160

ABSTRACT

Leading theories of affect development and empirical studies suggest that emotion can enhance memory in older adults. Destination memory which is defined as the ability to remember to whom we told a piece of information is being found to be compromised in aging. In the present study, we sought to assess destination memory using emotional stimuli (Emotional Destination Memory, EDM) in 16 older adults with mild cognitive impairment (MCI) and 16 healthy controls and shed light onto its potential neurophysiological aspects. We measured Mu suppression in frontal and temporal regions via EEG in real time while participants performed the task of EDM. Results showed no group differences in task performance but significant differences in fronto-temporal activations, specifically in electrodes F7 and F8. Differential Mu rhythm pattern was observed between healthy controls and MCI with the first exhibiting Mu suppression and the last Mu enhancement. Furthermore, Mu enhancement in temporal electrodes within the MCI group was associated with lower scores on EDM. The absence of group differences in the task can be explained by the fact that even if there are underlying structural or functional deficits in the MCI group, these deficits are manifested only at neurophysiological level and not at a behavioral level, which is a common pattern in the process of cognitive decline in its initial phases. The overall findings reveal that, even if there are not any behavioral decrements in MCI patients, they show reduced activations in fronto-temporal regions and this can be attributed to general impairment in emotional destination memory due to possible mirror neuron deficiency.


Subject(s)
Aging , Cognitive Dysfunction , Memory/physiology , Aged , Aging/physiology , Aging/psychology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Electroencephalography/methods , Emotions/physiology , Female , Frontal Lobe/physiopathology , Humans , Male , Neurophysiological Monitoring/methods , Neuropsychological Tests , Task Performance and Analysis , Temporal Lobe/physiopathology
8.
Healthc Technol Lett ; 3(1): 41-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27222732

ABSTRACT

Recent neuroscientific studies focused on the identification of pathological neurophysiological patterns (emotions, geriatric depression, memory impairment and sleep disturbances) through computerised clinical decision-support systems. Almost all these research attempts employed either resting-state condition (e.g. eyes-closed) or event-related potentials extracted during a cognitive task known to be affected by the disease under consideration. This Letter reviews existing data mining techniques and aims to enhance their robustness by proposing a holistic decision framework dealing with comorbidities and early symptoms' identification, while it could be applied in realistic occasions. Multivariate features are elicited and fused in order to be compared with average activities characteristic of each neuropathology group. A proposed model of the specific cognitive function which may be based on previous findings (a priori information) and/or validated by current experimental data should be then formed. So, the proposed scheme facilitates the early identification and prevention of neurodegenerative phenomena. Neurophysiological semantic annotation is hypothesised to enhance the importance of the proposed framework in facilitating the personalised healthcare of the information society and medical informatics research community.

SELECTION OF CITATIONS
SEARCH DETAIL
...