Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(5): e1009616, 2023 05.
Article in English | MEDLINE | ID: mdl-37186588

ABSTRACT

In complex natural environments, sensory systems are constantly exposed to a large stream of inputs. Novel or rare stimuli, which are often associated with behaviorally important events, are typically processed differently than the steady sensory background, which has less relevance. Neural signatures of such differential processing, commonly referred to as novelty detection, have been identified on the level of EEG recordings as mismatch negativity (MMN) and on the level of single neurons as stimulus-specific adaptation (SSA). Here, we propose a multi-scale recurrent network with synaptic depression to explain how novelty detection can arise in the whisker-related part of the somatosensory thalamocortical loop. The "minimalistic" architecture and dynamics of the model presume that neurons in cortical layer 6 adapt, via synaptic depression, specifically to a frequently presented stimulus, resulting in reduced population activity in the corresponding cortical column when compared with the population activity evoked by a rare stimulus. This difference in population activity is then projected from the cortex to the thalamus and amplified through the interaction between neurons of the primary and reticular nuclei of the thalamus, resulting in rhythmic oscillations. These differentially activated thalamic oscillations are forwarded to cortical layer 4 as a late secondary response that is specific to rare stimuli that violate a particular stimulus pattern. Model results show a strong analogy between this late single neuron activity and EEG-based mismatch negativity in terms of their common sensitivity to presentation context and timescales of response latency, as observed experimentally. Our results indicate that adaptation in L6 can establish the thalamocortical dynamics that produce signatures of SSA and MMN and suggest a mechanistic model of novelty detection that could generalize to other sensory modalities.


Subject(s)
Neurons , Thalamus , Neurons/physiology , Thalamus/physiology , Somatosensory Cortex/physiology
2.
Phys Rev Lett ; 125(8): 088103, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32909804

ABSTRACT

The ability of humans and animals to quickly adapt to novel tasks is difficult to reconcile with the standard paradigm of learning by slow synaptic weight modification. Here, we show that fixed-weight neural networks can learn to generate required dynamics by imitation. After appropriate weight pretraining, the networks quickly and dynamically adapt to learn new tasks and thereafter continue to achieve them without further teacher feedback. We explain this ability and illustrate it with a variety of target dynamics, ranging from oscillatory trajectories to driven and chaotic dynamical systems.


Subject(s)
Learning/physiology , Models, Neurological , Neurons/physiology , Animals , Cell Communication/physiology , Humans , Nerve Net/cytology , Nerve Net/physiology , Neurons/cytology
3.
Nat Neurosci ; 21(12): 1753-1763, 2018 12.
Article in English | MEDLINE | ID: mdl-30455456

ABSTRACT

Interactions between the prefrontal cortex (PFC) and mediodorsal thalamus are critical for cognitive flexibility, yet the underlying computations are unknown. To investigate frontothalamic substrates of cognitive flexibility, we developed a behavioral task in which mice switched between different sets of learned cues that guided attention toward either visual or auditory targets. We found that PFC responses reflected both the individual cues and their meaning as task rules, indicating a hierarchical cue-to-rule transformation. Conversely, mediodorsal thalamus responses reflected the statistical regularity of cue presentation and were required for switching between such experimentally specified cueing contexts. A subset of these thalamic responses sustained context-relevant PFC representations, while another suppressed the context-irrelevant ones. Through modeling and experimental validation, we find that thalamic-mediated suppression may not only reduce PFC representational interference but could also preserve unused cortical traces for future use. Overall, our study provides a computational foundation for thalamic engagement in cognitive flexibility.


Subject(s)
Behavior, Animal/physiology , Cerebral Cortex/physiology , Cognition/physiology , Thalamus/physiology , Animals , Attention/physiology , Cues , Learning/physiology , Male , Mice , Neural Pathways/physiology
4.
Front Comput Neurosci ; 12: 50, 2018.
Article in English | MEDLINE | ID: mdl-30061819

ABSTRACT

The interplay of reinforcement learning and memory is at the core of several recent neural network models, such as the Attention-Gated MEmory Tagging (AuGMEnT) model. While successful at various animal learning tasks, we find that the AuGMEnT network is unable to cope with some hierarchical tasks, where higher-level stimuli have to be maintained over a long time, while lower-level stimuli need to be remembered and forgotten over a shorter timescale. To overcome this limitation, we introduce a hybrid AuGMEnT, with leaky (or short-timescale) and non-leaky (or long-timescale) memory units, that allows the exchange of low-level information while maintaining high-level one. We test the performance of the hybrid AuGMEnT network on two cognitive reference tasks, sequence prediction and 12AX.

5.
Elife ; 62017 11 27.
Article in English | MEDLINE | ID: mdl-29173280

ABSTRACT

The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.


Subject(s)
Learning , Nerve Net/physiology , Computer Simulation , Nonlinear Dynamics
6.
PLoS One ; 10(5): e0098045, 2015.
Article in English | MEDLINE | ID: mdl-25942312

ABSTRACT

Stimulus encoding by primary sensory brain areas provides a data-rich context for understanding their circuit mechanisms. The vertebrate olfactory bulb is an input area having unusual two-layer dendro-dendritic connections whose roles in odor coding are unclear. To clarify these roles, we built a detailed compartmental model of the rat olfactory bulb that synthesizes a much wider range of experimental observations on bulbar physiology and response dynamics than has hitherto been modeled. We predict that superficial-layer inhibitory interneurons (periglomerular cells) linearize the input-output transformation of the principal neurons (mitral cells), unlike previous models of contrast enhancement. The linearization is required to replicate observed linear summation of mitral odor responses. Further, in our model, action-potentials back-propagate along lateral dendrites of mitral cells and activate deep-layer inhibitory interneurons (granule cells). Using this, we propose sparse, long-range inhibition between mitral cells, mediated by granule cells, to explain how the respiratory phases of odor responses of sister mitral cells can be sometimes decorrelated as observed, despite receiving similar receptor input. We also rule out some alternative mechanisms. In our mechanism, we predict that a few distant mitral cells receiving input from different receptors, inhibit sister mitral cells differentially, by activating disjoint subsets of granule cells. This differential inhibition is strong enough to decorrelate their firing rate phases, and not merely modulate their spike timing. Thus our well-constrained model suggests novel computational roles for the two most numerous classes of interneurons in the bulb.


Subject(s)
Interneurons/physiology , Odorants , Olfactory Bulb/cytology , Action Potentials/physiology , Animals , Electrophysiology , Models, Theoretical , Neurons/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...