Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 15517, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968082

ABSTRACT

Human papillomavirus (HPV) L1 and L2 capsid proteins self-assemble into virions capable of efficiently packaging either its 8 kilobase genome or non-viral DNA. The ability of HPV capsids to package non-viral DNA makes these a useful tool for delivering plasmids to study proteins of interest in a variety of cell types. We describe optimization of current methods and present new protocols for using HPV capsids to deliver non-viral DNA thereby providing an alternative to DNA transfection. Using keratinocyte generated extracellular matrices can enhance infection efficiency in keratinocytes, hepatocytes and neuronal cells. Furthermore, we describe a suspension-based efficient technique for infecting different cell types.


Subject(s)
Gene Transfer Techniques , Papillomaviridae/genetics , Capsid , Capsid Proteins/genetics , Cell Line , Hepatocytes , Humans , Keratinocytes , Neurons , Transfection/methods
2.
PLoS One ; 11(10): e0163954, 2016.
Article in English | MEDLINE | ID: mdl-27736905

ABSTRACT

Spinal muscular atrophy (SMA) is an intractable neurodegenerative disease afflicting 1 in 6-10,000 live births. One of the key functions of the SMN protein is regulation of spliceosome assembly. Reduced levels of the SMN protein that are observed in SMA have been shown to result in aberrant mRNA splicing. SMN-dependent mis-spliced transcripts in motor neurons may cause stresses that are particularly harmful and may serve as potential targets for the treatment of motor neuron disease or as biomarkers in the SMA patient population. We performed deep RNA sequencing using motor neuron-like NSC-34 cells to screen for SMN-dependent mRNA processing changes that occur following acute depletion of SMN. We identified SMN-dependent splicing changes, including an intron retention event that results in the production of a truncated Rit1 transcript. This intron-retained transcript is stable and is mis-spliced in spinal cord from symptomatic SMA mice. Constitutively active Rit1 ameliorated the neurite outgrowth defect in SMN depleted NSC-34 cells, while expression of the truncated protein product of the mis-spliced Rit1 transcript inhibited neurite extension. These results reveal new insights into the biological consequence of SMN-dependent splicing in motor neuron-like cells.


Subject(s)
Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , RNA Splicing , RNA, Messenger/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics , Animals , Cell Line , Disease Models, Animal , Exons , Female , Gene Expression Regulation , Introns , Male , Mice , Mice, Transgenic , Motor Neurons/metabolism , Muscular Atrophy, Spinal/pathology , Spinal Cord/metabolism , Spinal Cord/pathology , Transcriptome
3.
J Pharmacol Exp Ther ; 317(2): 858-64, 2006 May.
Article in English | MEDLINE | ID: mdl-16436499

ABSTRACT

Pertussis toxin (PTX)-insensitive mutants of Galpha(i/o) proteins expressed in C6mu cells were used to examine the hypothesis that there are agonist-specific conformational states of the mu-opioid receptor with coupling preferences to different Galpha(i/o) subtypes, as measured by the degree of stimulation of [(35)S]guanosine 5'-O-(3-thio)triphosphate (GTPgammaS) binding. Binding of [(35)S]GTPgammaS to endogenous Galpha(i/o) proteins stimulated by the full mu-opioid agonist [d-Ala(2),MePhe(4),Gly(5)-ol]enkephalin (DAMGO) was completely blocked by overnight treatment with 100 ng/ml PTX. Treatment for 4 h with lower concentrations led to a PTX-dependent reduction in the maximal effect of DAMGO but no alteration in the potency of DAMGO or morphine nor in the relative maximal effect (relative efficacy) of the partial agonists morphine and buprenorphine compared with the full agonist DAMGO. Using PTX-insensitive Galpha mutants in which the PTX-sensitive cysteine was replaced with isoleucine, the potency for a series of mu-opioid agonists was highest in cells expressing Galpha(i3) and Galpha(o) and lowest with Galpha(i1) and Galpha(i2), with no significant change in the order of potency, namely, etorphine >> endomorphin-1 = DAMGO = endomorphin-2 = fentanyl = morphine >> meperidine. The order of agonist relative efficacy, etorphine = DAMGO = endomorphin-1 = endomorphin-2 = fentanyl > or = morphine > or = meperidine > buprenorphine > or = nalbuphine, was also the same across all of the PTX-insensitive Galpha(i/o) subtypes. Highest relative efficacy to stimulate [(35)S]GTPgammaS binding was seen with Galpha(i3). Consequently, reported observations of agonist-directed trafficking at mu-opioid receptors most likely involve non-PTX-sensitive Galpha protein mechanisms.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Mutation , Pertussis Toxin/pharmacology , Receptors, Opioid, mu/agonists , Animals , Cell Line, Tumor , Cloning, Molecular , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Humans , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...