Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 20 Suppl 1: 50-62, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28985449

ABSTRACT

Mediterranean mountains are extraordinarily diverse and hold a high proportion of endemic plants, but they are particularly vulnerable to climate change, and most species distribution models project drastic changes in community composition. Retrospective studies and long-term monitoring also highlight that Mediterranean high-mountain plants are suffering severe range contractions. The aim of this work is to review the current knowledge of climate change impacts on the process of plant regeneration by seed in Mediterranean high-mountain plants, by combining available information from observational and experimental studies. We also discuss some processes that may provide resilience against changing environmental conditions and suggest some research priorities for the future. With some exceptions, there is still little evidence of the direct effects of climate change on pollination and reproductive success of Mediterranean high-mountain plants, and most works are observational and/or centred only in the post-dispersal stages (germination and establishment). The great majority of studies agree that the characteristic summer drought and the extreme heatwaves, which are projected to be more intense in the future, are the most limiting factors for the regeneration process. However, there is an urgent need for studies combining elevational gradient approaches with experimental manipulations of temperature and drought to confirm the magnitude and variability of species' responses. There is also limited knowledge about the ability of Mediterranean high-mountain plants to cope with climate change through phenotypic plasticity and local adaptation processes. This could be achieved by performing common garden and reciprocal translocation experiments with species differing in life history traits.


Subject(s)
Altitude , Climate Change , Plant Physiological Phenomena , Mediterranean Region , Plants , Reproduction
2.
Plant Biol (Stuttg) ; 15(3): 593-600, 2013 May.
Article in English | MEDLINE | ID: mdl-23043257

ABSTRACT

Seeds of high-mountain species are thought to germinate rapidly, synchronously and at high percentages after a cold period, with limited dependence on the external environment; yet, empirical evidence only partially supports this behaviour. We performed a comparative study of the germination response of two closely related taxa along an altitude gradient in northern Spain. Seeds from several maternal families of six populations of Saxifraga trifurcata (lowland species) and S. canaliculata (highland species) were subjected to temperature and stratification treatments. Germination percentages and germination rates were analysed using generalised linear mixed modelling and accelerated failure-time modelling. We found that germination percentages and germination rates were high and dependent on incubation temperature in both species. Within species, seeds from higher altitudes had higher germination percentages under all conditions. Cold-wet stratification negatively affected germination success, particularly in the lowland species. Overall, the highland species was less responsive to the experimental treatments and showed more synchronous germination patterns. We conclude that seeds from these two Saxifraga species germinate as efficiently as species from other habitats, but have a narrower germination response, probably due to the stronger selective pressures in their harsh environments. Finally, a cold, wet stratification period is not a prerequisite for the germination of high-mountain S. canaliculata, and its strong negative effect on the germination of its lowland relative S. trifurcata may contribute to the altitudinal segregation of these two species.


Subject(s)
Germination/physiology , Saxifragaceae/physiology , Adaptation, Physiological , Altitude , Ecosystem , Seeds/physiology , Spain , Temperature
3.
New Phytol ; 173(2): 367-82, 2007.
Article in English | MEDLINE | ID: mdl-17204083

ABSTRACT

Mountain plants are particularly sensitive to climate warming because snowmelt timing exerts a direct control on their reproduction. Current warming is leading to earlier snowmelt dates and longer snow-free periods. Our hypothesis is that high-mountain Mediterranean plants are not able to take advantage of a lengthened snow-free period because this leads to longer drought that truncates the growing season. However, reproductive timing may somewhat mitigate these negative effects through temporal shifts. We assessed the effects of flowering phenology on the reproductive success of Silene ciliata, a Mediterranean high-mountain plant, across an altitudinal gradient during two climatically contrasting years. The species showed a late-flowering pattern hampering the use of snowmelt water. Plant fitness was largely explained by the elapsed time from snowmelt to onset of flowering, suggesting a selective pressure towards early flowering caused by soil moisture depletion. The proportion of flowering plants decreased at the lowest population, especially in the drier year. Plants produced more flowers, fruits and seeds at the highest population and in the mild year. Our results indicate that water deficit in dry years could threaten the lowland populations of this mountainous species, while high-altitude environments are more stable over time.


Subject(s)
Altitude , Climate , Flowers/physiology , Seasons , Silene/physiology , Greenhouse Effect , Mediterranean Region , Microclimate , Probability , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...