Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
EXCLI J ; 23: 888-903, 2024.
Article in English | MEDLINE | ID: mdl-38983778

ABSTRACT

The coexistence within a subcellular complex of inter-cellular proteins Ro60, responsible for preserving ncRNA quality, and Ro52, involved in intracellular proteolysis, has been a subject of ongoing debate. Employing molecular docking in tandem with experimental methods like Quartz Crystal Microbalance with Dissipation (QCM-D), Proximity Ligation Assay (PLA), and Indirect Immunofluorescence (IIF), we reveal the presence of Ro60 associating with Ro52 within the cytoplasm. This result unveils the formation of a weak transient complex with a Ka ≈ (3.7 ± 0.3) x 106 M-1, where the toroid-shaped Ro60 structure interacts with the Ro52's Fc receptor, aligning horizontally within the PRY-SPRY domains of the Ro52's homodimer. The stability of this complex relies on the interaction between Ro52 chain A and specific Ro60 residues, such as K133, W177, or L185, vital in the Ro60-YRNA bond. These findings bridge the role of Ro60 in YRNA management with Ro52's function in intracellular proteolysis, emphasizing the potential impact of transient complexes on cellular pathways. See also the graphical abstract(Fig. 1).

2.
Anal Bioanal Chem ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922434

ABSTRACT

The biosensor, named "virusmeter" in this study, integrates quartz crystal microbalance technology with an immune-functionalized chip to distinguish between symptomatic patients with respiratory diseases and healthy individuals by analyzing exhaled air samples. Renowned for its compact design, rapidity, and noninvasive nature, this device yields results within a 5-min timeframe. Evaluated under controlled conditions with 54 hospitalized symptomatic COVID-19 patients and 128 control subjects, the biosensor demonstrated good overall sensitivity (98.15%, 95% CI 90.1-100.0) and specificity (96.87%, 95% CI 92.2-99.1). This proof-of-concept presents an innovative approach with significant potential for leveraging piezoelectric sensors to diagnose respiratory diseases.

3.
Biosens Bioelectron ; 213: 114454, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35696866

ABSTRACT

The impact of the COVID-19 pandemic has reinforced the need for rapid, cost-effective, and reliable point-of-care testing (POCT) devices for massive population screening. The co-circulation of SARS-CoV-2 with several seasonal respiratory viruses highlights the need for multiplexed biosensing approaches. Herein, we present a fast and robust all-in-one POCT device for parallel viral antigen and serological analysis. The biosensing approach consists of a functionalized polycarbonate disc-shaped surface with microfluidic structures, where specific bioreagents are immobilized in microarray format, and a portable optoelectronic analyzer. The biosensor quantifies the concentration of viral antigens and specific immunoglobulins G and M for SARS-CoV-2, influenza A/B, adenovirus, and respiratory syncytial virus, using 30 µL of a sample. The semi-automated analysis of 6 samples is performed in 30 min. Validation studies performed with 135 serum samples and 147 nasopharyngeal specimens reveal high diagnostic sensitivity (98-100%) and specificity (84-98%), achieving an excellent agreement (κ = 0.937) with commercial immunoassays, which complies with the World Health Organization criteria for POC COVID-19 diagnostic tests. The versatility of the POCT device paves the way for the detection of other pathogens and analytes in the incoming post-pandemic world, integrating specific bioreagents against different variants of concerns and interests.


Subject(s)
Biosensing Techniques , COVID-19 , Influenza, Human , Respiratory Tract Infections , Antigens, Viral/analysis , COVID-19/diagnosis , Humans , Influenza, Human/diagnosis , Pandemics , Point-of-Care Systems , Point-of-Care Testing , Respiratory Tract Infections/diagnosis , SARS-CoV-2 , Sensitivity and Specificity
4.
Anal Bioanal Chem ; 411(19): 4709-4720, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30317445

ABSTRACT

The mechanism of self-recognition of the autoantigen TROVE2, a common biomarker in autoimmune diseases, has been studied with a quartz crystal microbalance with dissipation monitoring (QCM-D) and dual polarization interferometry (DPI). The complementarity and remarkable analytical features of both techniques has allowed new insights into the onset of systemic lupus erythematosus (SLE) to be achieved at the molecular level. The in vitro study for SLE patients and healthy subjects suggests that anti-TROVE2 autoantibodies may undergo an antibody bipolar bridging. An epitope-paratope-specific binding initially occurs to activate a hidden Fc receptor in the TROVE2 tertiary structure. This bipolar mechanism may contribute to the pathogenic accumulation of anti-TROVE2 autoantibody immune complex in autoimmune disease. Furthermore, the specific calcium-dependent protein-protein bridges point out at how the TRIM21/TROVE2 association might occur, suggesting that the TROVE2 protein could stimulate the intracellular immune signaling via the TRIM21 PRY-SPRY domain. These findings may help to better understand the origins of the specificity and affinity of TROVE2 interactions, which might play a key role in the SLE pathogenesis. This manuscript gives one of the first practical applications of two novel functions (-df/dD and Δh/molec) for the analysis of the data provided by QCM-D and DPI. In addition, it is the first time that QCM-D has been used for mapping hidden Fc receptors as well as linear epitopes in a protein tertiary structure. Graphical abstract ᅟ.


Subject(s)
Autoantigens/physiology , Interferometry/methods , Lupus Erythematosus, Systemic/immunology , Quartz Crystal Microbalance Techniques , RNA, Small Cytoplasmic/physiology , Ribonucleoproteins/physiology , Autoantibodies/immunology , Autoantigens/chemistry , Autoantigens/immunology , Case-Control Studies , Female , Humans , Male , Protein Conformation , RNA, Small Cytoplasmic/chemistry , RNA, Small Cytoplasmic/immunology , Ribonucleoproteins/chemistry , Ribonucleoproteins/immunology
5.
RSC Adv ; 8(2): 867-876, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35538994

ABSTRACT

Protein-protein interactions are key in virtually all biological processes. The study of these interactions and the interfaces that mediate them play a key role in the understanding of biological function. In particular, the observation of protein-protein interactions in their dynamic environment is technically difficult. Here two surface analysis techniques, dual polarization interferometry and quartz crystal microbalance with dissipation monitoring, were paired for real-time mapping of the conformational dynamics of protein-protein interactions. Our approach monitors this dynamics in real time and in situ, which is a great advancement within technological platforms for drug discovery. Results agree with the experimental observations of the interaction between the TRIM21α protein and circulating autoantibodies via a bridging bipolar mechanism. This work provides a new chip-based method to monitor conformational dynamics of protein-protein interactions, which is amenable to miniaturized high-throughput determination.

6.
Biosens Bioelectron ; 90: 166-173, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-27888685

ABSTRACT

An autoantigen piezoelectric sensor to quantify specific circulating autoantibodies in human serum is developed. The sensor consisted on a quartz crystal microbalance with dissipation monitoring (QCM-D) where TRIM21 and TROVE2 autoantigens were covalently immobilized, allowing the selective determination of autoantibodies for diagnosis and prognosis of Systemic Lupus Erythematosus (SLE). The sensitivity of the biosensor, measured as IC50 value, was 1.51U/mL and 0.32U/mL, for anti-TRIM21 and anti-TROVE2 circulating autoantibodies, respectively. The sensor is also able to establish a structural interaction fingerprint pattern or profile of circulating autoantibodies, what allows scoring accurately SLE patients. Furthermore, a statistical association of global disease activity with TRIM21-TROVE2 interaction was found (n=130 lupic patient samples, p-value=0.0413). The performances of the biosensor were compared with standard ELISA and multiplex DVD-array high-throughput screening assays, corroborating the viability of piezoelectric biosensor as a cost-effective in vitro assay for the early detection, monitoring or treatment of rare diseases.


Subject(s)
Autoantibodies/blood , Autoantigens/immunology , Biosensing Techniques/instrumentation , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/diagnosis , Quartz Crystal Microbalance Techniques/instrumentation , RNA, Small Cytoplasmic/immunology , Ribonucleoproteins/immunology , Autoantibodies/immunology , Humans , Lupus Erythematosus, Systemic/immunology , Prognosis , Sensitivity and Specificity
7.
Langmuir ; 31(44): 12111-9, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26488670

ABSTRACT

A deeper understanding of the role of sialic/desialylated groups during TgMIC4-glycoproteins interactions has importance to better clarify the odd process of host cell invasion by members of the apicomplexan phylum. Within this context, we evaluated the interaction established by recombinant TgMIC4 (the whole molecule) with sialylated (bovine fetuin) and desialylated (asialofetuin) glycoproteins by using functionalized quartz crystal microbalance with dissipation monitoring (QCM-D). A suitable receptive surface containing recombinant TgMIC4 for monitoring ß-galactose-containing carbohydrate ligand (limit of quantification ∼ 40 µM) was designed and used as biomolecular recognition platform to study the binding and conformational mechanisms of TgMIC4 during the interaction with glycoprotein containing (fetuin), or not, terminal sialic group (asialofetuin). It was inferred that the binding/interaction monitoring depends on the presence/absence of sialic groups in target protein and is possible to be differentiated through a slower binding kinetic step using QCM-D approach (which we are inferring to be thus associated with ß-galactose ligand). This slower binding/interaction step is likely supposed (from mechanical energetic analysis obtained in QCM-D measurements) to be involved with Toxoplasma gondii (the causative agent of toxoplasmosis) parasitic invasion accompanied by ligand (galactose) induced binding conformational change (i.e., cell internalization process can be additionally dependent on structural conformational changes, controlled by the absence of sialic groups and to the specific binding with galactose), in addition to TgMIC4-glycoprotein solely recognition binding process.


Subject(s)
Carbohydrates/chemistry , Galactose/chemistry , Protozoan Proteins/chemistry , Toxoplasma/chemistry , Adsorption , Ligands , Molecular Conformation , Protein Binding , Quartz Crystal Microbalance Techniques
9.
Chem Commun (Camb) ; 49(92): 10868-70, 2013 Nov 28.
Article in English | MEDLINE | ID: mdl-24129270

ABSTRACT

A practical in silico method for optimizing and exploring biointeraction-based events is developed.


Subject(s)
Biosensing Techniques , Computer Simulation
10.
J Phys Chem B ; 117(28): 8360-9, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23799777

ABSTRACT

The quartz crystal microbalance (QCM) technique has been applied for monitoring the biorecognition of ArtinM lectins at low horseradish peroxidase glycoprotein (HRP) concentrations, using a simple kinetic model based on Langmuir isotherm in previous work.18 The latter approach was consistent with the data at dilute conditions but it fails to explain the small differences existing in the jArtinM and rArtinM due to ligand binding concentration limit. Here we extend this analysis to differentiate sugar-binding event of recombinant (rArtinM) and native (jArtinM) ArtinM lectins beyond dilute conditions. Equivalently, functionalized quartz crystal microbalance with dissipation monitoring (QCM-D) was used as real-time label-free technique but structural-dependent kinetic features of the interaction were detailed by using combined analysis of mass and dissipation factor variation. The stated kinetic model not only was able to predict the diluted conditions but also allowed to differentiate ArtinM avidities. For instance, it was found that rArtinM avidity is higher than jArtinM avidity whereas their conformational flexibility is lower. Additionally, it was possible to monitor the hydration shell of the binding complex with ArtinM lectins under dynamic conditions. Such information is key in understanding and differentiating protein binding avidity, biological functionality, and kinetics.


Subject(s)
Glycoproteins/chemistry , Mannose-Binding Lectins/chemistry , Plant Lectins/chemistry , Binding Sites , Glycoproteins/genetics , Glycoproteins/metabolism , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/metabolism , Models, Molecular , Plant Lectins/genetics , Plant Lectins/metabolism , Quartz Crystal Microbalance Techniques , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
11.
J Phys Chem B ; 116(19): 5679-88, 2012 May 17.
Article in English | MEDLINE | ID: mdl-22524596

ABSTRACT

A novel approach that may potentially be used to study biomolecular interactions including the simultaneous determination of structural and kinetic binding parameters is described in this Article for the first time. It allows a rigid distinction between the possible reaction mechanisms of biomolecular recognition, induced fit and conformational selection. The relative importance of the two pathways is determined not by comparing rate constants but the structural aspects of the interaction instead. So the exact location of antigen molecules with respect to the capture antibody is depicted experimentally, avoiding the use of X-ray crystallography. The proposed pattern is applied to study the anti-BSA Immunoglobulin G (IgG)-free Bovine Serum Albumin (BSA) interaction, in which IgG is anchored on a silicon chip sensing surface in an oriented manner. The exact location of the receptor with respect to the ligand was monitored during the binding process, thus drawing the full reaction scheme. IgG forms an asymmetric (FabBSA)2 complex with BSA molecules, even though it has two identical fragment antigen binding arms. This is thought to be due to steric hindrance caused by the binding of the first BSA molecule. Furthermore, the proposed model allows one to characterize reaction intermediates without the need of isolating them. These intermediates not characterized in situ so far are the keystone to understand how antibodies are able to identify antigens.


Subject(s)
Antigen-Antibody Complex/chemistry , Antigens/chemistry , Immunoglobulin G/chemistry , Models, Molecular , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/immunology , Algorithms , Animals , Cattle , Computer Simulation , Interferometry , Kinetics , Mice , Protein Binding , Protein Conformation , Time Factors
12.
J Am Chem Soc ; 129(22): 7121-6, 2007 Jun 06.
Article in English | MEDLINE | ID: mdl-17497777

ABSTRACT

This paper demonstrates the importance of the structural changeover in controlling the physical-chemical properties of hexacyanometalate-like materials (Prussian Blue). A meticulous in situ study of compositional variations using electroacoustic impedance techniques associated to electrogravimetric techniques in hexacyanoferrates containing K+ alkali metals reveals the existence of a nanostructural changeover coupled to a change of the magnetic properties of these electromagnetic materials. In the same way, the electroacoustic impedance techniques can be useful both in the understanding and in the in situ monitoring of the structural changeovers and the magnetic behavior of all kinds of materials.

13.
J Am Chem Soc ; 128(51): 17146-52, 2006 Dec 27.
Article in English | MEDLINE | ID: mdl-17177469

ABSTRACT

This paper describes the importance of (H2O)6 clusters in controlling the properties of hexacyanoferrate (Prussian Blue) materials. A careful in situ study of compositional changes by using electrogravimetric techniques (in ac and dc modes) in hexacyanoferrates containing K+ alkali metals reveals the existence of a changeover in the properties of these films in a narrow potential range. Control of the compositional variation of the changeover is dependent on the K+ stoichiometric number in the compound structure. However, a specific K+ occupation in the compound structure activates the occupation of the (H2O)6 cluster by H3O+ and/or H+, causing the changeover in the properties of hexacyanoferrate film. Thus, the information thus obtained is very useful for understanding the mechanisms involved in the electrochemical reversible switch between ferrimagnetism/paramagnetism, "semiconductor/metal" and electroluminescence/nonelectroluminescence properties of molecular cyanide materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...