Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(24): 29158-29169, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34121400

ABSTRACT

Biomolecular devices based on photo-responsive proteins have been widely proposed for medical, electrical, and energy storage and production applications. Also, bacteriorhodopsin (bR) has been extensively applied in such prospective devices as a robust photo addressable proton pump. As it is a membrane protein, in principle, it should function most efficiently when reconstituted into a fully fluid lipid bilayer, but in many model membranes, lateral fluidity of the membrane and protein is sacrificed for electrochemical addressability because of the need for an electroactive surface. Here, we reported a biomolecular photoactive device based on light-activated proton pump, bR, reconstituted into highly fluidic microcavity-supported lipid bilayers (MSLBs) on functionalized gold and polydimethylsiloxane cavity array substrates. The integrity of reconstituted bR at the MSLBs along with the lipid bilayer formation was evaluated by fluorescence lifetime correlation spectroscopy, yielding a protein lateral diffusion coefficient that was dependent on the bR concentration and consistent with the Saffman-Delbrück model. The photoelectrical properties of bR-MSLBs were evaluated from the photocurrent signal generated by bR under continuous and transient light illumination. The optimal conditions for a self-sustaining photoelectrical switch were determined in terms of protein concentration, pH, and light switch frequency of activation. Overall, a significant increase in the transient current was observed for lipid bilayers containing approximately 0.3 mol % bR with a measured photo-current of 250 nA/cm2. These results demonstrate that the platforms provide an appropriate lipid environment to support the proton pump, enabling its efficient operation. The bR-reconstituted MSLB model serves both as a platform to study the protein in a highly addressable biomimetic environment and as a demonstration of reconstitution of seven-helix receptors into MSLBs, opening the prospect of reconstitution of related membrane proteins including G-protein-coupled receptors on these versatile biomimetic substrates.


Subject(s)
Bacteriorhodopsins/chemistry , Lipid Bilayers/chemistry , Bacteriorhodopsins/radiation effects , Dimethylpolysiloxanes/chemistry , Electrochemical Techniques , Gold/chemistry , Light , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Photochemical Processes , Unilamellar Liposomes/chemistry
2.
Chem Commun (Camb) ; 56(76): 11251-11254, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32820783

ABSTRACT

The binding of influenza receptor (HA1) to membranes containing different glycosphingolipid receptors was investigated at Microcavity Supported Lipid Bilayers (MSLBs). We observed that HA1 preferentially binds to GD1a but the diffusion coefficient of the associated complex at lipid bilayer is approximately double that of the complexes formed by HA1 GM1 or GM3.


Subject(s)
Gangliosides/chemistry , Hemagglutinins, Viral/chemistry , Influenza, Human , Lipid Bilayers/chemistry , Microfluidic Analytical Techniques , Binding Sites , Humans
3.
Nanoscale Adv ; 2(10): 4740-4756, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-36132883

ABSTRACT

Plasmonic nanostructures are important across diverse applications from sensing to renewable energy. Periodic porous array structures are particularly attractive because such topography offers a means to encapsulate or capture solution phase species and combines both propagating and localised plasmonic modes offering versatile addressability. However, in analytical spectroscopic applications, periodic pore arrays have typically reported weaker plasmonic signal enhancement compared to particulate structures. This may be addressed by introducing additional nano-structuring into the array to promote plasmonic coupling that promotes electric field-enhancement, whilst retaining pore structure. Introducing nanoparticle structures into the pores is a useful means to promote such coupling. However, current approaches rely on either expensive top-down methods or on bottom-up methods that yield random particle placement and distribution. This report describes a low cost, top-down technique for preparation of nano-sub-structured plasmonic pore arrays in a highly reproducible manner that can be applied to build arrays extending over macroscopic areas of mm2 to cm2. The method exploits oxygen plasma etching, under controlled conditions, of the cavity encapsulated templating polystyrene (PS) spheres used to create the periodic array. Subsequent metal deposition leads to reproducible nano-structuring within the wells of the pore array, coined in-cavity nanoparticles (icNPs). This approach was demonstrated across periodic arrays with pore/sphere diameters ranging from 500 nm to 3 µm and reliably improved the plasmonic properties of the substrate across all array dimensions compared to analogous periodic arrays without the nano-structuring. The enhancement factors achieved for metal enhanced emission and surface enhanced Raman spectroscopy depended on the substrate dimensions, with the best performance achieved for nanostructured 2 µm diameter pore arrays, where a more than 104 improvement over Surface Enhanced Raman Spectroscopy (SERS) and 200-fold improvement over Metal Enhanced Fluorescence (MEF) were observed for these substrates compared with analogous unmodified pore arrays. The experiments were supported by Finite-Difference Time-Domain (FDTD) calculations used to simulate the electric field distribution as a function of pore nano-structuring.

SELECTION OF CITATIONS
SEARCH DETAIL
...