Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 23(1): 210, 2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37743482

ABSTRACT

BACKGROUND: Pancreatic cancer is one of the leading causes of cancer death in Western societies. Its late diagnosis and resistance to chemotherapies result in a high mortality rate; thus, the development of more effective therapies for the treatment of pancreatic cancer is strongly warranted. Usnic acid (UA) is a secondary metabolite of lichens that shows modest antiproliferative activity toward cancer cells. Recently, we reported the synthesis of a UA pyrazole derivative, named 5, which was more active than the parent compound toward cervical cancer cells. Here, its anticancer potential has been evaluated in detail in other cancer cells, particularly pancreatic cancer cells. METHODS: The impact of UA and derivative 5 on cell viability, morphology, cell cycle, and death was assessed using the MTT test, electron microscopy, flow cytometry, and immunoblotting, respectively. The calcium ions level was detected fluorometrically. In vivo, the anticancer activity of 5 was evaluated in a murine xenograft model. RESULTS: Derivative 5 inhibited the viability of different cancer cells. Noncancerous cells were less sensitive. It induced the release of calcium ions from the endoplasmic reticulum (ER) and ER stress, which was manifested by cell vacuolization. It was accompanied by G0/G1 cell cycle arrest and cell death of pancreatic cancer cells. When applied to nude mice with xenografted pancreatic cancer cells, 5 inhibited tumor growth, with no signs of kidney or liver toxicity. CONCLUSIONS: UA derivative 5 is superior to UA inhibiting the growth and proliferation of pancreatic cancer cells. ER stress exaggeration is a mechanism underlying the activity of derivative 5.

2.
Bioorg Med Chem ; 79: 117157, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36652792

ABSTRACT

Natural products continue to be an inspiration for new drugs to treat debilitating diseases such as cancer. Usnic acid is a secondary metabolite isolated predominately from lichen species and has been shown to exhibit antiproliferative properties, however its application is limited by poor drug-like properties and low specificity. We report our work on investigating the reactivity of usnic acid for incorporating heterocyclic rings and the divergent reactivity that can be obtained by simply altering the reaction solvent and temperature. The synthesised derivatives were then tested against HeLa cancer cells for their antiproliferative properties. A number of promising compounds were obtained including 4, 5 and 9 that showed an IC50 of 878, 311 and 116 nM, respectively, against HeLa cancer cells after 48 h of treatment.


Subject(s)
Benzofurans , Lichens , Neoplasms , Humans , HeLa Cells , Benzofurans/pharmacology , Benzofurans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...